ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download

Abstract

The corrosion and electrochemical behavior of the Al + 6% Li alloy doped with yttrium was studied in a NaCl solution with the help of a potentiodynamic mode of the potentiometric method at a potential scan rate of 2mV • C-1. The relationship between the free corrosion potential and the time of the original Al + 6% Li alloy and yttrium alloys shows a potential shift towards more positive values. At the same time the free corrosion potential of an alloy containing 0.05 wt.% yttrium has a more negative value than the original alloy. Further increase in the yttrium concentration will result in the free corrosion potential shift towards positive values. Yttrium, when added to the Al + 6% Li alloy in the NaCl solution at concentrations of 0.03, 0.3 and 3.0%, causes a shift in the corrosion and pitting potential of alloys into the posi-tive range. The same happens with the repassivation po-tential, which indicates that the pitting centres created have a better passivation in neutral media. With increasing concentration of chloride-ions in the NaCl electrolyte the pitting potential of the Al + 6% Li alloy doped with yttrium shifts into the negative range. An increasing concentration of chloride-ions causes a higher corrosion rate in alloys independent of their com-position. It was demonstrated that the addition of yttrium resulted in an almost twofold lower corrosion rate of the Al + 6% Li alloy in the NaCl solution.

Keywords

Al + 6% Li alloy, yttrium, potentiostatic method, the NaCl electrolyte, corrosion potential, pitting potential, corrosion rate.

 

Nazarov Shuhratjon Abdugulomovich – Postgraduate Student, Institute of Chemistry named after V.I. Nikitin, Academy of Sciences, Dushanbe, Tajikistan.

Ganiev Izatullo Navruzovich – D.Sc. (Chemistry), Professor, Academic, Academy of Sciences of the Republic of Tajikistan, Head of Laboratory, Institute of Chemistry named after V.I. Nikitin, Dushanbe, Tajikistan.

Norova Muattara Turdyevna – Senior Researcher Institute of Chemistry named after V.I. Nikitin, Academy of Sciences, Dushanbe, Tajikistan.

Ganieva Nargis Izatulloevna – Senior Researcher Institute of Chemistry named after V.I. Nikitin, Academy of Sciences, Dushanbe, Tajikistan.

Irene Calliari – Università degli Studi di Padova, Padova, Italy. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

1. Fei Zhang, Jian Shen, Xiao – Dong, et al. Homogenization heat treatment of 2099 Al-Li Alloy. Rare Metals. 2014, vol. 33 (1), pp. 28-36.

2. Norova М.Т., Ganiev I.N., Ganieva N.I. Korroziia aluiminievo-litievykh splavov s shchelochnozemel’nymi metallami [Corro-sion of Al-Li alloys containing alkali-earth metals]. Germany, LAP LAMBERT Academic Publishing. 2012, 110 p.

3. Lutc А.R., Suslina А.А. Aliuminii i ego splavy [Aluminium and aluminium alloys]. Samara, Samara State Technical University. 2013, 81 p.

4. M.L. Bairwa, P.P. Date. Effect of heat treatment on the tensile properties of Al-Li alloys. Journal of Materials Processing Technology 153-154 (2004) 603-607.

5. Fragomeni J, Wheeler R, Jata KV. Effect of single and duplex aging on precipitation response, microstructure, and fatigue crack behavior in Al–Li–Cu alloy AF/C-458. J. Mater. Eng. Perform. 2005, 50(1):18.

6. Shamsiddinov A.D., Ganiev I.N., Kenzhibalo V.V., Tyvanchyuk А.Т. Phase diagrams of alloy systems. Al-Li-Sc (Y) at 440К. Dokl. AN Respubliki Tadzhikistan [Report by Academy of Sciences of the Rupublic of Tajikistan]. 1992, no. 2, vol. 35, pp. 45-47.

7. Ganiev I.N., Nazarov Kh.М., Odinaev Kh.О. Splavy aliuminiia s redkozemel’nymi metallami [Aluminium alloys containing rare earth metals]. Dushanbe, Maorif. 2004, 190 p.

8. Obidov Z.R., Amonova A.V., Ganiev I.N. Influence of the Ph of the medium on the anodic behavior of scandium–doped Zn55Al alloy. Russian Journal of Non –Ferrous Metals. 2013, vol. 54, no. 3, pp. 234-238.

9. Amini R. N., Ironi M.B., Ganiev I.N., Obidov Z.R., Galfan I. and Galfan II doped with calcium, corrosion resistant alloys. Oriental Journal of Chemistry. 2014, vol. 30, no. 3, pp. 969-973.

10. Ganiev I.N., Umarova Т.М., Obidov Z. R. Korroziia dvoynykh splavov aliuminiia s elementami periodicheskoy sistemy [Cor-rosion of binary aluminium alloys containing chemical ele-ments]. Germany, LAP LAMBERT Academic Publishing. 2011, 198 p.

11. Sussek G., Kesten M., Feller H.G. Zur Lochfrakorrosion Von Reinst aluminium in chloride und Sulfathealtigen Electroliten. Teil 11. Metall. 1979, vol. 33, no. 12, pp. 1276-1281.

12. Sanders T.H., Rinker J.G, Marek M. Corrosion of aluminium alloys containing lithium. Corros. Sci. 1982, no. 45, pp. 283-304.

13. Gor I. Korroziia aliuminiia i ego splavov [Corrosion of aluminium and aluminium alloys]. Bossku Gidayuzu. 1978, pp. 194-202.

14. Ahmad Z. Mechanismen Beider Pitingbildung in Aluminium und sienen Legierungen. Aluminium. 1985, vol. 61, no. 2, pp. 128-129.

15. Hunkeler F. Bohni H. Mechanism of pit growth on aluminium under open circuit conditions. Corrosion. USA. 1984, vol. 40, no. 10, pp. 534-540.

16. Nazarov А.P., Lisovskii А.P., Mizaylovskii Yu.М. Anodic dissolution of aluminium in the presence of halogenide ions. Zashchita metallov [Protection of Metals]. 1990, vol. 26, no. 6, pp. 970-975.

17. Bakulin А.V. Potentiodynamic study of pitting repassivation on aluminium. Zashchita metallov [Protection of Metals]. 1985, vol. 2, no. 3, pp. 390-395.