DOI: 10.18503/1995-2732-2024-22-3-60-70
Abstract
The article describes the design features of laboratory research duo mill 130 with a roll body length of 160 mm. The mill of the described design provides for rolling with a maximum roll force of 60 kN and an allowable rolling torque of 710 N·m. Maximum rolling speed is 0.3 m/s. Automation and data acquisition systems of the mill are used to set the roll gap and rolling speed and measure rolling force and torque. During the experimental rolling of a lead strip, 1.2 mm thick, from a workpiece, 11.5 mm thick, in 6 passes, we measured rolling forces and torques. The research presents experimental curves of rolling forces and torques. The method for calculating rolling force and torque developed for duo mill 130 factors into the structural features of the mill, geometric parameters and properties of the rolled material. A comparison of the experimental and calculated values of rolling force and torque showed their high convergence, the error did not exceed 5%. It was established during experimental studies that idle torque of the mill was 65 N·m. The coefficient of friction when rolling the lead strip on steel rolls is 0.18. The ratio of the arm of the resultant forces of metal pressure on the rolls to length of the contact arc, when calculating rolling torque, should be taken 0.5. The proposed method for calculating rolling force and torque can be used to conduct analytical studies on the influence of rolling modes on energy and power parameters. Laboratory duo rolling mill 130 presented in the research can be used in research activities to study new alloys, as well as in the educational process, when teaching engineers for metallurgy and mechanical engineering sectors.
Keywords
rolling, rolling mill, rolling force, rolling torque, load cell, average roll pressure, deformation zone, duo mill 130
For citation
Radionova L.V., Gromov D.V., Faizov S.R., Lisovsky R.A., Zaramenskikh S.E., Glebov L.A. A Method for Calculating Energy and Power Parameters of Strip Rolling on Duo Mill 130. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2024, vol. 22, no. 3, pp. 60-70. https://doi.org/10.18503/1995-2732-2024-22-3-60-70
1. Gugis N.N. Development of rolling production in the Russian Federation in 2019-2022. Stal [Steel]. 2023;(2):14-26. (In Russ.)
2. Shatalov R.L. Raschet, proektirovanie i primenenie prokatnogo oborudovaniya: ucheb. posobie [Calculation, design and application of rolling equipment: study guide]. Vologda: LLC Infra-Inzheneriya Publishing House, 2020, 236 p. (In Russ.) EDN CGZYRH. ISBN 978-5-9729-0434-4
3. Shtansky V.A. Ensuring sustainable innovative development of enterprises of the metallurgical complex. Ekonomika promyshlennosti [Russian Journal of Industrial Economics]. 2019;12(4):466-472. (In Russ.) DOI:10.17073/2072-1633-2019-4-466-472. EDN IEDGIS
4. Volkova E.F., Duyunova V.A., Mostyaev I.V., Akinina M.V. Regularities of the formation and features of the influence of a fine structure on the properties of a new generation magnesium alloy. Vestnik Kontserna VKO Almaz – Antey [Journal of Almaz – Antey Air and Space Defence Corporation]. 2020;(1(32)):55-63. (In Russ.) https://doi.org/10.38013/2542- 0542-2020-1-55-63. EDN IGFQBQ
5. Zakharov V.V., Filatov Yu.A., Teleshov V.V. Research of OJSC VILS in the field of developing deformable aluminum alloys based on new alloying systems. Tekhnologiya legkikh splavov [Technology of Light Alloys]. 2018;(4):16-23. (In Russ.). EDN YZAJDV
6. Pozdnyakov A.V., Barkov R.Yu., Sarsenbaev Zh. et al. Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy. Physics of Metals and Metallography. 2019;120(6):614-619. DOI: 10.1134/S0031918X19060097. EDN HCYDXA
7. Zayakin O.V., Kel I.N., Renev D.S. et al. Physicochemical characteristics of new complex niobium-containing alloys. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya [Izvestiya. Ferrous Metallurgy]. 2023;66(5):616-622. (In Russ.) https://doi.org/10.17073/0368-0797-2023-5-616-622. EDN WDWEQI
8. Available at: https://www.chermet.net/production/ (Accessed on December 10, 2023)
9. Available at: https://viam.ru/news/7062# (Accessed on December 10, 2023)
10. Koptseva N.V., Efimova Yu.Yu., Pesin A.M., Chukin M.V. Investigation of the features of the formation of the structure of steel 08Yu during asymmetric rolling on a new mill 400. Chernye metally [Ferrous Metals]. 2022;(10):39-44. (In Russ.) DOI: 10.17580/chm.2022.10.07. EDN: LQNOKQ
11. Radionova L.V., Lisovsky R.A., Faizov S.R. et al. Educational and research duo rolling mill 130. Mashinostroenie: setevoy elektronnyi nauchnyi zhurnal [Russian Internet Journal of Industrial Engineering]. 2023;10(1):61-66. (In Russ.) DOI: 10.24892/RIJIE/20230112. EDN OSVHAE
12. Radionova L.V., Lisovsky R.A., Faizov S.R. et al. A wire drawing machine for research. Mashinostroenie: setevoy elektronnyi nauchnyi zhurnal [Russian Internet Journal of Industrial Engineering]. 2023;10(3):51-55. (In Russ.) DOI: 10.24892/RIJIE/20230310. EDN RAQMSS
13. Radionova L.V., Lisovsky R.A., Gromov D.V. et al. Physical simulation when students study theory and technologies of rolling. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya [Bulletin of South Ural State University. Series: Metallurgy]. 2023;23(2):23-42. (In Russ.) DOI: 10.14529/met230203. EDN RGPZMK
14. Dubinskiy F.S., Sosedkova M.A., Maltsev P.A. Research and training simulator of shape rolling process. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya [Bulletin of South Ural State University. Series: Metallurgy]. 2015;15(2):120-125. (In Russ.) EDN TQIWTP
15. Gasiyarov V.R., Radionov A.A., Puzankova E.A. Methods of calculating rolling torque on plate mill 5000. Elektrotekhnicheskie sistemy i kompleksy [Electrical Systems and Complexes]. 2009;(16):100-109. (In Russ.) EDN QMNNKP
16. Tselikov A.I. Teoriya rascheta usiliy v prokatnykh stanakh [Theory of calculating forces in rolling mills]. Moscow: Metallurgizdat, 1962, 495 p. (In Russ.) EDN YKTGIH
17. Tselikov A.I., Nikitin G.S., Rokotyan S.E. Theory of longitudinal rolling. Moscow: Metallurgiya, 1980, 320 p. (In Russ.)
18. Gubkin S.I. Teoriya obrabotki metallov davleniem [Theory of metal forming]. Moscow: Metallurgiya, 1947, 423 p. (In Russ.)
19. Korolev A.A. Prokatnye stany i oborudovanie prokatnykh tsekhov. Atlas [Rolling mills and equipment of rolling shops. Atlas]. Volume 2. Moscow: Metallurgiya, 1981, 208 p. (In Russ.)
20. Gasiyarov V.R., Radionov A.A., Usatyi D.Yu. Developing an updated methodology for calculating torque of the motor shaft for stands of the hot plate rolling mill and checking its adequacy. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika [Russian Electromechanics]. 2011;(4):78-81. (In Russ.) EDN ODZISV
21. Salganik V.M., Gun I.G., Karandaev A.S., Radionov A.A. Tonkoslyabovye liteyno-prokatnye agregaty dlya proizvodstva stalnykh polos: ucheb. posobie dlya studentov vuzov, obuchayushchikhsya po spetsialnosti «Obrabotka metallov davleniem», napravleniya podgotovki diplomirovannykh spetsialistov «Metallurgiya» [Thin slab casting and rolling facilities for producing steel strips: study guide for university students majoring in metal forming, the metallurgy field of study]. Moscow: Bauman Moscow State Technical University (national research university), 2003, 506 p. (In Russ.) EDN QNANGB
22. Salganik V.M., Radionov A.A., Antipenko V.A., Androsenko V.V. Study on energy and power parameters of cold rolling of sheet metal on mill 2500 at OJSC MMK. Elektrotekhnicheskie sistemy i kompleksy [Electrical Systems and Complexes]. 2000;(5):114-120. (In Russ.) EDN QMNKAD
23. Kolmogorov V.L., Parshakov S.I., Burkin S.P. et al. Reshenie tekhnologicheskikh zadach OMD na mikroEVM: ucheb. posobie dlya studentov, aspirantov, prepodavateley i inzhenerov-tekhnologov, ispolzuyushchikh personalnuyu vychislitelnuyu tekhniku [Solution of technological problems of metal forming using a microcomputer: study guide for students, postgraduate students, university teachers and technology engineers using personal computing equipment]. Moscow: Metallurgiya, 1993, 320 p. EDN WZELDM
24. Rumyantsev M.I., Kinzin D.I. Teoriya prokatki [Rolling theory]. Magnitogorsk: Nosov Magnitogorsk State Technical University, 2017, 188 p. (In Russ.) EDN XQPULB
25. Rudskoy A.I., Lunev V.A. Teoriya i tekhnologiya prokatnogo proizvodstva: ucheb. posobie dlya studentov vuzov, obuchayushchikhsya po napravleniyu «Metallurgiya»; Federalnoe agentstvo po obrazovaniyu, Sankt-Peterburgskiy gos. politekhn. un-t [Theory and technology of rolling: study guide for university students majoring in metallurgy; Federal Agency for Education, Saint Petersburg State Polytechnic University]. Saint Petersburg: Nauka, 2008. (In Russ.) ISBN 978-5-02-025302-5. EDN QNCBAH