ISSN (print) 1995-2732
ISSN (online) 2412-9003




Using the methods of transmission electron diffraction microscopy, a quantitative evolution analysis of defective and carbide subsystems of medium-carbon steel with a bainite structure under a compression strain up to 36% has been performed. A quantitative analysis of carbon redistribution has been carried out, as well as the dependence established of the concentration of carbon atoms arranged in a crystal lattice of a- and g-iron on structural defects in cementite particles lying in a number of bainite plates and intra-phase boundaries, and on the degree of deformation.
It has been demonstrated that scalar dislocation density, material volume with deformation twins, a number of stress concentrators, the amplitude of crystal lattice curvature-torsion, the disorientation degree of fragments are increased with the growth of the degree of deformation and average longitudinal fragment sizes are decreased. The long-range stress fields have been estimated. The possible causes of the different stages of parameter changes of the carbide phase and dislocation substructure with deformation have been discussed.
Strengthening mechanisms with the boundaries of the plates and fragments, scalar dislocation density, long-range stress fields, and cementite particles, the interstitial atoms have been estimated. It has been shown that the largest contribution to the amount of work hardening of the steel examined leads to substructural hardening (hardening due to long-range internal stress fields and structure fragmentation) and solid-solution hardening, due to the introduction of carbon atoms into the crystal lattice of the ferrite.

It has been suggested that the cause of softening of steel with a bainite structure at high (over 15%) degrees of deformation is the activation of the process of deformation fine-scale twinning.


hardening, bainite, deformation, cementite, dislocation substructure, mechanisms, steel.


Gromov V.E. Siberian State Industrial University, Novokuznetsk, Russia, Nikitina E.N. Siberian State Industrial University, Novokuznetsk, Russia, IvanovYu.F. Institute of high–current electronics SB RAS, Tomsk, Russia , Aksenova K.V. Siberian State Industrial University, Novokuznetsk, Russia, Semina O.A.Siberian State Industrial University, Novokuznetsk, Russia
  1. Ohmori Y., Jung Y.-C., Nakai K., Shiori H. Bainite transformation and the diffusional migration of bainite/austenite broad interfaces in Fe-9%Ni-C alloys // Acta Materialia. 2001. Vol. 49. Iss. 6. P. 3149–3162.
  2. Quidort D., Brechet Y.J.M. Isothermal growth kinetics of bainite in 0.5% C steels // Acta Materialia. 2001. Vol. 49. Iss. 20. P. 4161–4170.
  3. Sourmail T., Smanio V. Low temperature kinetics of bainite formation in high carbon steels // Acta Materialia. 2013. Vol. 61. Iss. 7. P. 2639–2648.
  4. Clarke A.J., Speer J.G., Miller M.K. et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition process: A critical assessment // Acta Materialia. 2008. Vol. 56. Iss. 1. P. 16–22.
  5. Borgenstam A., Hillert M., Agren J. Metallographic evidence of carbon diffusion in the growth of bainite // Acta Materialia. 2009. Vol. 57. Iss. 11. P. 3242–3252.
  6. Gudremon E. Special steels. Moscow: Metallurgiya, 1966. 1274 p.
  7. Matrosov Yu.I., Litvinenko D.A. and Golovanenko S.A. Steel for gas pipelines. Moscow: Metallurgiya, 1989. 288 p.
  8. Pavlov V.V., Godik L.A., Korneva L.V., Kozyrev N.A., Kuznetsov E.P. Railway rails from bainite steel // Metallurg. 2007. Iss. 4. P. 51–53.
  9. Novikov I.I. Theory of thermal treatment of metals. Moscow: Metallurgiya, 1978. 392 p.
  10. Pikering F.B. Physical metallurgy and development of steels. Moscow: Metallurgiya, 1982. 184 p.
  11. Kurdjumov V.G., Utevskii L.M. and Entin R.I. Transformations in iron and steel. Moscow: Nauka, 1977. 236 p.
  12. Bhadeshia H.K.D.H. Bainite in Steels. 2nd ed. The Institute of Materials London, 2001. 460 p.
  13. Lee S.-J., Park J.-S., Lee Y.-K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel // Scripta Materialia. 2008. Vol. 59. Iss. 1. P. 87–90.
  14. Sourmal T., Smanio V. Low temperature kinetics of bainite formation in high carbon steels // Acta Materialia. 2013. Vol. 61. Iss. 7. P. 2639–2648.
  15.  Fucheng X. and Luyut Ch. Bainite steels with ultra-low content of carbon and prospects of their application // Problems of Materials Science. 2008. Vol. 53. Iss.  1. P. 52–61.
  16. Fang H.-S., Yang J.-B., Yang Z.-G., Bai B.-Z. The mechanism of bainite transformation in steel // Scripta Materialia. 2012. Vol. 47. Iss. 3. P. 157–162.
  17. Speich G. and Swann Р.R. Regularities of steel work hardening // J. Iron and Steel Inst. 1965. Vol. 203. Iss.  4. P. 480–485.
  18. Belous M.V., Cherepin V.T. and Vasiliev M.A. Transformations on tempering of steel. Moscow: Metallurgiya, 1973. 290 p.
  19. Ivanov Yu.F., Kornet E.V., Kozlov Ye.V. and Gromov V.E. Hardened structural steel: structure and mechanisms of hardening. Novokuznetsk: Izd-vo SibGIU, 2010.  174 p.
  20. Utevskii L.M. Diffraction electron microscopy in physical metallurgy. Moscow: Metallurgiya, 1973. 584 p.
  21. Hirsh P., Khovi A., Nikolson R., Pjeshli D. and Uelan M. Electron microscopy of thin crystals. Moscow:  Mir, 1968. 574 p.
  22. Pridantsev M. V., Davydova L. N. and Tamarina A. M. Structural Steel Handbook. Moscow: Metallurgiya, 1980. 288 p.
  23. Koneva N.A. and Kozlov Ye.V. Nature of substructural hardening // Russian Physics journal. 1982. Iss. 8. P. 3–14.
  24. Koneva N.A., Kozlov Ye.V., Trishkina L.I. and Lychagin D.V. The long-range stress fields, curvature-torsion of the crystal lattice and the stage of plastic deformation. Measurement methods and results // Proceedings of the International Conference "New Methods in Physics and Mechanics of Deformed Solid Body". Tomsk: TGU, 1990. P. 83–93.
  25. Naulor I.R. The influence of the lath morphology on the yield strength and transition temperature on martensite-bainite steel // Met. Trans. 1979. Vol. 10A. Iss. 7. Р. 873–891.
  26. Belen'kiy B.Z., Farber B.M. and Goldshtein M.I. Hardness estimates of low-carbon low-alloy steels according to structural data // The Physics of Metals and Metallography. 1975. Vol. 39. Iss. 3. P. 403–409.
  27. Trefilov V.I., Moiseev V.I., Pechkovskiy Ye.P. et al. Deformation hardening and failure of polycrystalline metals. Kiev: Naukova dumka, 1987. 248 p.
  28. Mac Leen D. Mechanical properties of metals. Moscow: Metallurgiya, 1965. 431 p.
  29. Goldshteyn M.I. and Farber B.M. Dispersion hardening of steel. Moscow: Metallurgiya, 1979. 208 p.
  30. Shtremel M.A. Strength of alloys. Part II: Deformation. Moscow:  MISIS, 1997. 527 p.
  31. Predvoditelev A.A. The present state of the art of dislocation ensembles study // Problems of Modern Crystallography. Moscow: Nauka, 1975. P. 262–275.
  32. Embyri I.D. Strengthening by dislocations structure // Strengthening Method in Crystals. Applied Science Publishes. 1971. P. 331–402.
  33. Static strength and mechanics of failure of steels: Collected articles, translated from German / Edited by V. Dal’, V. Anton. Moscow: Metallurgiya, 1986. 566 p.
  34. Hall E.O. The deformation and ageing of mild steel: III discussion of results // Proc. Phys. Soc. 1951. Vol. 64B. P. 747–753.
  35. Lukke K. and Gottshtejn G. Atomic mechanisms of plasticity of metals // Static strength and mechanics of failure of steels: Collected articles, translated from German / Edited by V. Dal’, V. Anton. Moscow: Metallurgiya, 1986. P. 14–36.
  36. Dal’ V. Increase in strength at the expense of grain refinement // Static strength and mechanics of failure of steels: Collected articles, translated from German / Edited by V. Dal’, V. Anton. Moscow: Metallurgiya, 1986. P. 133–146.
  37. Gromov V.E., Kozlov Ye.V., Bazaikin V.I., Cellermaer V.Ya. and Ivanov Yu.F. Physics and mechanics of drawing and forging. Moscow: Nedra, 1997. 293 p.
  38. Strunin B.N. On distribution of internal stresses at random arrangement of dislocations // Solid State Physics. 1967. Vol. 9. Iss. 3. P. 805–812.
  39. Ashby M.F. Physics of Strength and Plasticity. MIT press Cambridge. Mass. 1969. P. 113.
  40. Tekin E., Kelly P.M. Tempering of steel precipitation from iron base alloys. Gordon: Breach, 1965. 283 p.
  41. Barnard S.J., Smith G.D.W., Saricaya M., Thomas G. Carbon atom distribution in a dual phase steels: on atom probe study // Scripta met. 1981. Vol. 15. Iss. 4.  P. 387–392.
  42. Fleischer R.L. Dislocation structure in solution hardened alloys // Electron microscopy and strength of crystals. New York; Wiley: Interscience, 1963. P. 973–989.
  43. Vohringer O., Macherauch E. Structure und Mechanische eigen-schaft von martensite // H.T.M. 1977. Vol. 32. Iss. 4. P. 153–202.
  44. Ridley N., Stuart H. and Zwell L. Lattice parameters of Fe-C austenite of room temperature // Trans. Met. Soc. AIME. 1969. Vol. 246. Iss. 8. P. 1834–1836.
  45. Norstrom L.A. On the yield strength of quenched low-alloy lath martensite // Scandinavian J. of Met. 1976. Vol. 5. Iss. 4. P. 159–165.
  46. Prnka T. Quantitative relationships between parameters of dispersion precipitations and mechanical properties of steels // Physical metallurgy and heat treatment of steel. 1979. Iss. 7. P. 3–8.
  47. Koneva N.A., Kiseleva S.F., Popova N.A. and Kozlov Ye.V. Evolution of internal stresses and density of stored energy under deformation austenite steel 110Mg13 // Deformation and failure of materials. 2013. Iss.  9. P. 38–42.
  48. Kiseleva S.F., Popova N.A., Koneva N.A. and Kozlov Ye.V. Effect of transformation twins on excessive density of dislocations and internal stresses of deformed fcc crystal lattice of material // Bulletin of the Russian Academy of Sciences. Physics. 2012. Vol. 76. Iss. 13. P. 70–74.
  49. Likhachev V.A., Panin V.E., Zasimchuk E.E. et al. Cooperative deformation process and localization of deformation. Kiev: Naukova dumka, 1989. 320 p.
  50. Gromov V.E., Panin V.E., Kozlov Ye. V. et al. Channels of deformation in conditions of electrostimulated drawing // Metallphysics. 1991. Vol. 13. Iss. 11. P. 27–34.
  51. Gromov V.E., Petrunin V.A. Localization of plastic deformation under conditions of electrostimulated drawing // Physica stalus Solidi (a). 1993. Vol. 139. Р. 77–81.
  52. Ivanov Yu.F., Gromov V.E., Kozlov Ye. V., Sosnin O.V. Evolution of channels of localized deformation in the process of electrostimulated drawing of low carbon steel // Izvestiya Vuzov. Ferrous metallurgy. 1997. Iss. 6. P. 42–45.