Abstract
Problem Statement (Relevance): The need for a thorough study of the relationship between the temperature and the properties of iron is due to the following: iron is the "main" base of the "main" industrial alloys (steels); the body-centered cubic lattice characteristic of iron at low temperatures is unique and theoretically impossible, but it still exists; the heat capacity of iron «is contradictory to» Debye theory not only when it reaches Curie point (~ 770°C), but also at ~ 200°C, ~ 450°C and ~ 650°C, which leads to the assumptions that transformations may occur in iron when it reaches the above temperatures. Objectives: The aim of the research is to use the literature and empirical data to justify the transformations that occur in iron at ~200°C, ~450°C and ~650°C in order to explain the properties of steels. Methods Appled: The specimens used in the research were almost pure iron (0.008% C). A 20°C step was used for the experiment, which included an x-ray diffraction analysis and identifying the resistance to sinking strain (with the help of Gleeble 3800). The methodology is based on the following propositions by B.G. Livshits: «Any property can be used for analyzing the phase equilibrium»; by А.А.Vertman, A.M. Samarin: «One can choose any from around 50 properties currently used in physical and chemical analysis as structure-sensitive properties»; by A.A. Bochvar: «As a measured physical property, one can be take hardness..., electrical conductivity…, density, linear expansion coefficient and so on». Originality: Based on the empirical and theoretical data on abnormal physical and mechanical properties of iron (and steel as its derivative) the article describes why transformations occur in iron at ~ 650°C, ~ 450°C, ~ 200°C. By recognizing the transformations that occur in iron at the above temperatures one can explain the nature of multiple abnormal properties of iron and steel. Findings: Using the following curves: «resistance to sinking strain» and «fine structure of iron depending on the temperature» – and abundant literary evidence describing the physical and mechanical properties of iron (and steel), the article states that transformations occur in iron at ~200°C, ~450°C and ~650°C. Practical Relevance: By recognizing that the suggested transformations do take place, one can find the explaination for multiple abnormal properties demonstrated by iron and steel, as well as predict the properties of steels that are exposed to the above mentioned temperatures as part of the heat treatment process.
Keywords
Iron, steel, polymorphism, transformation, TRIP effect, hardness, strength, ductility, heat capacity.
1. Gaev I.S., Sheyanova E.V. Polymorphism and his impact on the properties of iron. Metallovedenie. Materialy simpoziuma po metallurgii i metallovedeniyu, posvyashchennogo 100-letiyu otkrytiya D.K. Chernovym polimorfizma zheleza [Proceedings of the Symposium on Metallurgy and Science of Metals marking the 100th anniversary of Chernov’s discovery of polymorphism in iron]. Moscow: Nauka, 1971, pp. 26−35. (In Russ.)
2. Tyrkel E. Istoriya razvitiya diagrammy zhelezo – uglerod [The history of Iron-Carbon Diagram]. Moscow: Mashinostroenie, 1968. 280 p. (In Russ.)
3. Gudremon E. Spetsialnye stali [Special steels]. Vol. 1. Moscow: Metallurgizdat, 1959. 952 p. (in Russ.)
4. Obergoffer E. Tekhnicheskoe zhelezo [Technical iron]. Moscow, Leningrad: Metallurgizdat, 1940. 535 p. (In Russ.)
5. Savitsky E.M. Vliyanie temperatury na mekhanicheskie svoystva metallov i splavov [The effect of temperature on the mechanical properties of metals and alloys]. Moscow, 1957. 294 p. (In Russ.)
6. Morozov O.P, Mirzaev D.A, Steinberg M.M. On some regular transformations that occur in iron under rapid cooling conditions. FMM, 1971, vol. 32, no. 6, pp. 1290–1296. (In Russ.)
7. Shakhnazarov K.Yu., Shakhnazarov A.Yu. 430± 30°C – a nodal (critical) temperature of iron and carbon steel. Metallovedenie i termicheskaya obrabotka metallov [Metallography and heat treatment of metals]. 2001, no.11, pp. 24–25. (In Russ.)
8. Malyshev K.A., Sagaradze V.V., Sorokin I.P., Zemtsova N.D., Teplov V.A., Uvarov A.I. Fazoviy naklep austenitnykh splavov na zhelezonikelevoy osnove [The phase hardening of austenitic iron-nickel alloys]. Moscow: Nauka, 1982. 260 p. (In Russ.)
9. Vasilieva A.G., Pogodin-Alekseev G.I. The anomaly of strength and ductility in the intercritical range. Metallovedenie i termicheskaya obrabotka metallov [Metallography and heat treatment of metals]. 1957, no. 1, pp. 23–29. (In Russ.)
10. Powell R.W. Further measurements of the thermal and electrical conductivity of iron at high temperatures. The proceedings of the physical society. 1939, vol. 51, part 3, no. 285, pp. 407–418. (In Russ.)
11. Mogutnov B.M., Tomilin I.A., Shvartsman L.A. Termodinamika zhelezouglerodistykh splavov [The thermodynamics of iron-carbon alloys]. Moscow: Metallurgiya, 1972. 328 p. (In Russ.)
12. Livshits B.G. Fizicheskie svoystva splavov [The physical properties of alloys]. Moscow: Metallurgizdat, 1946. 320 p. (In Russ.)
13. Bozorth R. Ferromagnetizm [Ferromagnetism]. Moscow, 1956. 784 p. (In Russ.)
14. Schulze A. On a special phenomenon in transformations that extend over a temperature range. Journal of metallurgy. 1935, no.11, pp. 251–255. (In Russ.)
15. Novikov I.I. Teoriya termicheskoy obrabotki [The theory of heat treatment]. Moscow: Metallurgiya, 1978. 392 p. (In Russ.)
16. Kramarov M.A., Shakhnazarov Yu.V. The crack resistance of 40X steel determined by the tempering temperature. Metallovedenie i termicheskaya obrabotka metallov [Metallography and heat treatment of metals]. 1971. no.7, pp 76–77. (In Russ.)
17. Moroz L.S. Tonkaya struktura i prochnost’ stali [The fine structure and strength of steel]. Moscow: Metallurgizdat, 1957. 159 p. (In Russ.)
18. Schastlivtsev V.M., Mirzaev D.A., Yakovleva I.L., Okishev K.Yu., Tabatchikova T.I., Khlebnikova Yu.V. Perlit v uglerodistykh stalyakh [Perlite in carbon steels]. Ekaterinburg, 2006. 311 p. (In Russ.)
19. Sadovsky V.D., Fokina E.A. Ostatochniy austenit v zakalennoy stali [Retained austenite in hardened steel]. Moscow: Nauka, 1968. 113 p. (In Russ.)
20. Grigorovich V.K. Elektronnoe stroenie i termodinamika splavov zheleza [The electronic structure and the thermodynamics of iron alloys]. Moscow: Nauka, 1970. 292 p. (In Russ.)
21. Sadovsky V.D. The results of the discussion on temper brittleness. Metallovedenie i termicheskaya obrabotka metallov [Metallography and heat treatment of metals], 1957, no. 6, pp. 24–42. (In Russ.)
22. Rudnitskiy N.P. The static mechanical properties of AK29 steel in the temperature range of 290 to 1500 K. Metally, 2003, no. 1, pp. 57–62. (In Russ.)
23. Ustinovshchikov Yu.I., Bannykh O.A. Priroda otpusknoy khrupkosti staley [The nature of temper embrittlement in steels]. Moscow: Nauka, 1984. 240 p. (In Russ.)
24. Lozinskiy M.G. Vysokotemperaturnaya metallografiya [High-temperature metallography]. Moscow: Mashgiz, 1956. 312 p. (In Russ.)
25. Gridnev V.N., Petrov Yu.N., Trefilov V.I. Voprosy fiziki metallov i metallovedeniya [Some Problems of Physics of Metals and Metallurgy]. Kiev, 1960, no. 10. (In Russ.)
26. Livshits B.G., Kraposhin V.S., Linetskiy Ya.L. Fizicheskie svoystva metallov i splavov [The physical properties of metals and alloys]. Moscow: Metallurgiya, 1980. 320 p. (In Russ.)
27. Mogutnov B.M., Tomilin I.A., Shvartsman L.A. Termodinamika zhelezouglerodistykh splavov [The thermodynamics of iron-carbon alloys]. Moscow: Metallurgiya, 1972. 328 p. (In Russ.)
28. Shakhnazarov Yu.V., Andreeva V.D. The hardness and the width of the X-ray line of carbon and medium-alloy steels after tempering at 20–670°C. Materialovedenie, plasticheskaya i termicheskaya obrabotka. [Materials Science, Shaping and Heat Treatment]. St. Petersburg, 2001, pp. 34–36. (In Russ.)
29. Umanskiy Ya.S., Finkelstein B.N., Blanter M.E., Kishkin S.T. Fizicheskoe metallovedenie [Physical metallurgy]. Moscow: Metallurgizdat, 1955. 724 p. (In Russ.)
30. Moroz L.S., Chechulin B.B. Vodorodnaya khrupkost’ metallov [Hydrogen embrittlement of metals]. Moscow: Metallurgiya, 1967. 256 p. (In Russ.)
31. Babich V.K., Gul Yu.P., Dolzhenkov I.E. Deformazionnoe uprochnenie stali [Strain hardening of steel]. Moscow: Metallurgiya, 1972. 320 p. (In Russ.)
32. Belous M.V., Cherepin V.T., Vasiliev M.A. Prevrashchenie pri otpuske stali [Transformation of steel during tempering]. Moscow: Metallurgiya, 1973. 323 p. (In Russ.)
33. Kubaschewski O., Hopkins B. Okislenie metallov i splavov [Oxidation of metals and alloys]. Moscow: Metallurgiya, 1965. 429 p. (In Russ.)
34. Bell. J.F. Eksperimentalnye osnovy mekhaniki deformiruemykh tverdykh tel [Basic experiments of deformable solid mechanics]. Moscow: Nauka, 1984, part 1, 600 p. (In Russ.)
35. Kutyaykin V.G. The impact of deformation and heat treatment on lattice strain and the mechanical properties of steels. Metallovedenie i termicheskaya obrabotka metallov [Metallography and heat treatment of metals]. 2002. no. 8. pp. 13–17. (In Russ.)
36. Kurdyumov G.V., Utevsky L.M., Entin R.I. Prevrashcheniya v zheleze i stali [Transformations in iron and steel]. Moscow: Nauka, 1977. 236 p. (In Russ.)
37. Livshits B.G. Fizicheskie svoystva splavov [The physical properties of alloys]. Moscow: Metallurgizdat, 1946. 320 p. (In Russ.)