ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download

Abstract

The high-strain-rate method of materials for dynamic strength investigations under micro and sub-microsecond durations of shock loads on the base of electrical explosion of conductors have been developed. The experimental investigations of dynamic properties for bulk metallic glass on the base of Ti and Zr under shock loads of sub-microsecond duration (~0.5-0.7 μs) in the pressure range up to 12 GPa have been carried out. The values of Hugoniot elastic limit (HEL) and spall strength for these amorphous alloys have been received. The Hugoniot shock adiabat parameters were determined in the space Ush - up. The result of microstructure analysis of saved specimens revealed areas of recrystallization.

Keywords

bulk metallic glass, shock load, electrical explosion of conductors, dynamic strength, Hugoniot elastic limit, spall strength.

 

Atroshenko S.A. Institute for Problems of Mechanical Engineering, Russian Academy of Science, Saint Petersburg, Russia

  1. Berezin, G.V., Sudenkov, Yu.V. Investigation of shock waves from the electrical explosion of conductors on the dynamic response of solid barriers, Physical mechanics, 4, 119, 1980 (in Russian).
  2. I. Smirnov, Atroshenko S., Yu. Sudenkov, N. Morozov, Wei Zheng, N. Naumova, Jun Shen. Dynamic properties of bulk metallic glass on the base of Zr. Shock Compression of Condensed Matter – 2011, Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter held in Chicago, Illinois, USA June 26 – July 1, 2011. American Institute of Physics Melville, New York, 2012, pp. 1121–1124
  3. S.A. Atroshenko, N.F. Morozov, W. Zheng, Y.J. Huang, Yu.V. Sudenkov, N.S. Naumova , Jun Shen. Deformation behaviors of a TiZrNiCuBe bulk metallic glass under shock loading. Journal of Alloys and Compounds 505 (2010) 501–504
  4. Jaglinski, T.; Turneaure, Stefan J.; Gupta, Y. M., Effect of compositional variation on the shock wave response of bulk amorphous alloys. Journal of Applied Physics, Volume 112, Issue 6, pp. 063529-063529-8 (2012)
  5. S.J. Turneaure, S.K. Dwivedi and Y.M. Gupta. Shock-wave induced tension and spall in a zirconium-based bulk amorphous alloy. J. Appl. Phys. 101, 043514 (2007)
  6. S.J. Turneaure, J.M. Winey, Y.M. Gupta. Response of a Zr-based bulk amorphous alloy to shock wave compression. J. Appl. Phys. 100 (2006) 063522
  7. Binqiang Luo, Guiji Wang, Fuli Tan, Jianheng Zhao, Cangli Liu, and Chengwei Sun. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading. AIP ADVANCES 5, 067161 (2015)
  8. T. Mashimo, H. Togo, Y. Zhang, Y. Uemura, T. Kinoshita, M. Kodama, Y. Kawamura. Hugoniot-compression curve of Zr-based bulk metallic glass. Appl. Phys. Lett. 89 (2006) 241904
  9. Feng Xi, Yuying Yu, Chengda Dai, Yi Zhang and Lingcang Cai. Shock compression response of a Zr-based bulk metallic glass up to 110 GPa. J. Appl. Phys. 108, 083537 (2010)
  10. F.P. Yuan, V. Prakash, J.J. Lewandowski. Spall Strength of a Zirconium-based Bulk Metallic Glass. Proceedings of the XIth International Congress and Exposition June 2–5, 2008 Orlando, Florida USA. 2008. Society for Experimental Mechanics Inc.
  11. Huang, Y. J., Shen, J. and Sun, J. F. Bulk metallic glasses: smaller is softer, Applied Physics Letters, vol. 90, 081919, 2007
  12. S. J. Turneaure, J. M. Winey and Y. M. Gupta. Compressive shock wave response of a Zr-based bulk amorphous alloy. Appl. Phys. Lett. 84, 1692 (2004)
  13. Z.F. Zhang, F.F. Wu, G. He, J. Eckert. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials. J. Mater. Sci. Technol. 23 (2007) 747
  14. L. Lu, C. Li, W.H. Wang, M.H. Zhu, X.L. Gong, S.N. Luo. Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading. Materials Science & Engineering A 651 (2016) 848–853
  15. J. Lu and G. Ravichandran. Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass, Journal of Materials Research, 18, 2039-2049 (2003)
  16. E. Bouchaud, D. Boivin, J. L. Pouchou, D. Bonamy, B. Poon and G. Ravichandran, Fracture through cavitation in a metallic glass, Europhysics Letters, 83, (2008)
  17. Frans Spaepen, David Turnbull The activation volume of the diffusivity in amorphous metals. Scripta Metallurgica et Materialia Volume 25, Issue 7, July 1991, Pages 1563–1565
  18. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25 (1977) 407. Volume 25, Issue 4, April 1977, Pages 407–415
  19. Barker, L.M., and Holenbach, R.E., “Interferometer technique for measuring the dynamic mechanical properties of materials”, Review of Scientific Instruments, 36, 1617, 1965.
  20. Zlatin, N. A., Mochalov, S. M., Pugachev, G. S., and Bragov, A. M., “Time dependence of the process of metal failure under intensive loads”, Fiz. Tverd. Tela, 16(6), 1753, 1974 [in Russian].
  21. Sud’enkov, Yu.V., and Sazhko, Z.A., “Acoustooptic Spectroscopy of Metal Structure Modifications under Plastic Deformation Due to Submicrosecond Impulsive Shock Loading”, Technical Physics, Vol. 48, N1, 125, 2003
  22. Atroshenko, S.A., “Shock-Induced Dynamic Recystallization in Metals”, in Recrystallization and Grain Growth (eds. Gottstein, G. and Molodov, D.A., Springer-Verlag), 2001.
  23. Mescheryakov, Yu.I., and Atroshenko, S.A., “Dynamic recrystallization in shear bands”, in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (Eds. L.E. Murr et al Elsevier Science, Amsterdam), 1995, 443–450.