ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download

Abstract

This article presents an overview of the main research directions in the field of computer simulation of the metal microstructure composition during processing. Main advantages and disadvantages of modern methods have been identified, their applications in various fields of metal forming were reviewed, the key development directions and problems were designated. A metal structure reconstruction method was proposed.

Keywords

Computer simulation, microstructure, metal forming, representative volume.

Konstantinov Dmitry Vyacheslavovich – Postgraduate Student, Nosov Magnitogorsk State Technical University, Russia.

Korchunov Alexey Georgievich – D.Sc. (Eng.), Professor, Vice-Rector for International Affairs, Nosov Magnito-gorsk State Technical University, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

1. Chukin M.V., Korchunov A.G., Polyakova M.A., Gulin A.V. Analiz metoda nepreryvnogo deformatsionnogo nanostrukturirovaniya provoloki s ispolzovaniem kontsepcii tekhnologicheskogo nasledovaniya. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2012, no. 4, pp. 61-65.

2. Korchunov A.G., Chukin M.V., Gun G.S., Polyakova M.A. Upravlenie kachestvom produktsii v tekhnologiyakh metiznogo proizvodstva [Products quality management in metalware production processes]. Moscow: Ruda i Metally, 2012, 164 p.

3. Korchunov A.G., Polyakova M.A., Gulin A.V., Konstantinov D.V. Technological Inherited Connections in Continuous Method of Deformational Nanostructuring. Applied Mechanics and Materials. Vol. 555 (2014), pp. 401-405. © (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMM.555.401

4. Kuksa L.V., Evdokimov E.E. Razrabotka konechno-elementnoy modeli i metoda rascheta elementov konstruktsii iz strukturno-neodnorodnykh materialov s faktorami kontsentratsii napryazheniuy. Izvestiya vuzov. Stroitelstvo. [News of higher educational institutions. Construction]. 2002, no. 5, pp. 16-21.

5. Panin V.E., Grinyaev Yu.V., Danilov V.I. Strukturnye urovni plasticheskoy deformatsii i razrusheniya [Structural levels of yield strain and fracture]. Novosibirsk: Nauka, 1990, 252 p.

6. Pashkov P.O. Razryv metallov [Fracture of metals]. Leningrad: Sudpromgiz, 1960, 243 p.

7. Pisarenko G.S., Lebedev A.A. Deformirovanie i prochnost materiala pri slozhnom napryazhennom sostoyanii [Metal deformation and strength at combined stress]. Kiev: Naukova dumka, 1976, 415 p.

8. Rybalko F.P. Raspredelenie neodnorodnostey plasticheskoy deformatsii [Distribution of non-uniformities of plastic defor-mation]. Izvestiya vuzov. Fizika [News of higher educational institutions. Physics]. 1959, no. 1, pp. 6-14.

9. Fridman Ya.B., Zilova T.K., Demina N.I. Izuchenie plasticheskoy deformatsii i razrusheniya metodom katannykh setok [Study of plastic deformation and fracture by a rolled grid method]. Moscow: Oborongiz, 1962, 188 p.

10. Chen Jian, Yan Wen, Li Bing, Ma XiaoGuang, Du XinZhi & Fan XinHui Microstructure and texture evolution of cold drawing <110> single crystal copper. Science China. Technological Sciences, June 2011, vol.54, no.6, pp. 1551–1559.

11. Garcıa-Infanta J.M., Zhilyaev A.P., Carreno F., Ruano O.A., Su J.Q., Menon S.K., McNelley T.R. Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy. Ultrafine grained materials. J Mater Sci (2010) 45, pp. 4613–4620.

12. Dougherty J., Cerreta E.K., Gray III G.T., Trujillo C.P., Lopez M.F., Vecchio K.S., and Kusinski G.J. Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading. Ultrafine grained materials. J Mater Sci (2010) 45, pp. 4500–4503.

13. Yoshida K., Yamashita T., Tanaka A. Prevention of Wire Breaks in Gold Fine Wire Drawing and Improvement in Wire Straightening. Bulk Metal Forming-steel research int. 2011, Special Edition.

14. Seoung-Bum Son, Hyunshul Roh, Suk Hoon Kang. Relationship betwen microstructure homogeity and bonding stability of ultrafine gold wire. Ultrafine grained materials. J Mater Sci (2010) 45, pp. 236-244.

15. Bunova G.Z., Voronin S.V., Grechnikov F.V., Yushin V.D. Kompyuternoe modelirovanie protsessa vytyazhki polykh stakanchikov iz splava amg6 s uchetom realnoy struktury materiala. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk [Proceedings of the Samara Scientific Centre of the Russian Academy of Sciences]. 2009, vol. 11, no. 3-1. pp. 219-224.

16. Voronin S.V., Yushin V.D., Bunova G.Z. Kompyuternoe modelirovanie protsessa prokatki splava amg6 s uchetom ego anizotropii. Izvestiya vysshix uchebnyx zavedenij. Aviacionnaya texnika [News of higher educational institutions. Aircraft Engineering]. 2008, no. 4, pp. 72-73.

17. Voronin S.V., Yushin V.D., Bunova G.Z. Computer-aided simulation of the amg6 alloy rolling process with allowance for its anisotropy. Russian Aeronautics, 2008, vol. 51, no. 4, pp. 457-460.

18. Voronin S.V., Bunova G.Z., Yushin V.D. Kompyuternoe issledovanie vliyaniya realnoy struktury materialov na kharakter rasprostraneniya treshchin v khrupkikh anizotropnykh telakh [A computer-aided study of how a real structure of materials influences a character of crack propagation in brittle anisotropic bodies]. Problemy mashinostroeniya i avtomatizacii [Problems of mechanical engineering and automation]. 2006, no. 4, pp. 72-77.

19. Lan Y.J., Li D.Z., Li Y.Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metallurgical and Materials Transactions B, February 2006, vol. 37, iss. 1, pp. 119-129.

20. Guk S.V., Smirnov O.M., Kavalla R. Neravnomernost deformatsii komponentov mikrostruktury mnogofaznykh staley pri otsenke predelnoy formuemosti listovogo metalla [Unhomogeneity of deformation of multiphase steel microstructure components when evaluating limit formability of sheets]. Metallurg [Metallurgist]. 2006, no. 5, pp. 29-32.

21. Guk S., Kawalla R. Microstructure strain localization during sheet metal hydroforming processes. Steel research international 76, no. 12 (2005), pp. 843-851.

22. Bhandari Y., Sarkar S., Groeber M., Uchic M.D., Dimiduk D.M., Ghosh S. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Computational Materials Science 41 (2007), pp. 222–235.

23. Ghosh S., Bhandari Y., Groeber M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections. Computer-Aided Design 40 (2008), pp. 293–310.

24. Soloshenko A.N. Razrabotka metoda modelirovaniya naprya-zhenno-deformirovannogo sostoyaniya pri obrabotke davleniem strukturno-neodnorodnykh materialov: avtoreferat dissertacii po metallurgii, 05.16.05. [Development of a simulation method for a strain-deformation state when forming structurally inhomogeneous materials: extended abstract Ph.D. dissertation]. Yekaterinburg, 2000, 19 p.

25. Sarma G.B., Radhakrishnan B., and Zacharia T. Finite Element Simulations of Cold Deformation at the Mesoscale. Comp Mater Sci., 12 (2) (1998), pp. 105-123.

26. Militzer M., Hoyt J.J., Provatas N., Rottler J., Sinclair C.W., and Zurob H.S. Multiscale Modeling of Phase Transformations in Steels. JOM, 2014. The Minerals, Metals & Materials Society, pp. 19-26. doi: 10.1007/s11837-014-0919-x.

27. Igor Simonovski and Leon Cizelj. Grain-Scale Modeling Ap-proaches for Polycrystalline Aggregates. Polycrystalline Materials - Theoretical and Practical Aspects, InTech 2012, pp. 49-74.

28. Rafal Golab, Lukasz Madej, Maciej Pietrzyk. The complex computer system based on cellular automata method designed to support modelling of laminar cooling processes. Journal of Machine Engineering, vol. 14, no.1, 2014, pp. 63-73.

29. Lim H., Lee M.G., Kim J.H., Adams B.L., Wagoner R.H. Simulation of polycrystal deformation with grain and grain boundary effects. International Journal of Plasticity 27 (2011), pp. 1328–1354.

30. Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D.D., Bieler T.R., Raabe D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia 58 (2010), pp. 1152–1211.

31. Ellis B.D., DiPaolo B.P., McDowell D.L., Zhou M. Experimental investigation and multiscale modeling of ultra-highperformance concrete panels subject to blast loading. International Journal of Impact Engineering 69 (2014), pp. 95-103.

32. Guillermo Etse,Antonio Caggiano, Sonia Vrech. Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model. Int J Fract (2012) 178, pp. 131–146. doi: 10.1007/s10704-012-9733-z.

33. Pietrzyk Maciej, Kusiak Jan, Kuziak Roman, Madej Łukasz, Szeliga Danuta, and Gołab Rafał. Conventional and Multiscale Modeling of Microstructure Evolution During Laminar Cooling of DP Steel Strips. Metallurgical and materials transactions, 2014, pp. 17-34.

34. Rauch L., Kuziak R., and Pietrzyk M. From High Accuracy to High Efficiency in Simulations of Processing of Dual-Phase Steels. Metallurgical and materials transactions volume 45b, APRIL 2014, pp. 497-506. doi: 10.1007/s11663-013-9926-5.

35. Watanabel I., Setoyama D., Nagasako N., Iwata N. and Nakanishi K. Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing. International journal for numerical methods in engineering 2012; 89, pp. 829–845. Published online on 12 August 2011 in Wiley Online Library (wileyonlinelibrary.com). doi: 10.1002/nme.3264

36. Wiewiórowska S. Określenie parametrów dwustopniowej obróbki cieplnej zapewniających uzyskanie w strukturze końcowej niskowęglowej stali maksymalnej ilości austenitu szczątkowego decydującego o efekcie TRIP. Hutnik-Wiadomosci-Hutnicze, 76, 2009, pp. 122-125.

37. Rauch Ł., Pernach M., Bzowski K., Pietrzyk M. On application of shape coefficients to creation of the statistically similar representative element of DP steels. Computer Methods in Materials Science, 11, 2011, pp. 531-541.

38. Muszka K., Madej Ł., Graca P., Perzynski K., Sun L., Palmiere E. Numerical investigation of influence of the martensite volume fraction on DP steels fracture behavior on the basis of digital material representation model. Metallurgical and Materials Transactions A, 2014, pp. 11-17.

39. Wei X.C., Li L., Fu R.Y., De Cooman B.C., Wollants P., Zhu X.D., Wang L. Influence of the strain rate on the strain-induced transformation of retained austenite to martensite in high strength low alloy TRIP steels. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, 2002, pp. 367-371.

40. Wiewiórowska S. Determination of content of retained austenite in steels with TRIP effect deformed at different strain rates. Steel Research International, 81, 2010, spec. issue conf. Metal Forming, pp. 262-265.

41. Wiewiórowska S. The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP Effect. Solid State Phenomena 165, 2010, pp. 216-220.

42. Konstantinov D.V., Korchunov A.G. Sovremennye podkhody k predstavleniyu mikrostruktury pri modelirovanii protsessov OMD [Modern approaches to microstructure representation when simulating metal forming processes: international collection of research papers, edited by V.M. Salganik]. Magnitogorsk: Nosov Magnitogorsk State Technical University, 2014, iss. 20, pp. 49-55.