ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download PDF

DOI: 10.18503/1995-2732-2023-21-4-132-139

Abstract

Problem Statement (Relevance). Currently, there is a growing trend to replace traditional structural materials with composite ones. High specific mechanical properties of composites contribute to designing lightweight and reliable structures. A promising scientific area is the development of composite materials that increase mechanical characteristics by improving the external structure and manufacturing technology. The manufacturing technology of Al-steel composites with wavy contact surfaces between aluminum and steel provides increased strength of the connection between the layers. To design structures from composite materials, integrated packages of finite element calculations are widely used to simulate the effect of various loads, geometric dimensions and materials of elements in each layer on stiffness of composites. Objectives. The research is aimed at studying the influence of the wave profile on the deformation of a layered composite sample. Methods Applied. Using the SIMULIA/Abaqus software suite, the authors obtained deflection curves, as well as strain and stress distributions along the Z-axis of the deformed mesh along the length of the composite sample for various deformation schemes. Originality. The authors carried out a novel simulation of the process of bending of layered composite AMg3-08sp with flat and wavy interfaces. Result. It has been established that a wavy interface of the steel-aluminum composite increased stiffness of the product. Based on the calculated data on the distribution of deformation and von Mises stresses in different layers of the composite, it has been shown that the reason for the decreased deformation in the composite with a wavy interface is the redistribution of stresses. Practical Relevance. The results of the study contribute to designing composite materials with increased stiffness.

Keywords

layered composites, bending, deformation, simulation, finite element method, stiffness, strength, steel, aluminum, von Mises stresses, wave profile

For citation

Pivovarova K.G., Matveev S.V., Pesina S.A., Mogilnykh A.E., Pustovoitova O.V., Fedoseev S.A. Simulation of the Bending Process of a Steel-Aluminum Composite with a Wave-Shaped Interface. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2023, vol. 21, no. 4, pp. 132-139. https://doi.org/10.18503/1995-2732-2023-21-4-132-139

Kseniya G. Pivovarova – DrSc (Eng.), Professor, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0000-0002-9961-4074

Sergei V. Matveev – DrSc (Physics and Mathematics), Professor, Chelyabinsk State University, Chelyabinsk, Russia.

Svetlana A. Pesina – DrSc (Philology), Professor, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Anna E. Mogilnykh – PhD (Eng.), Engineer, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Olga V. Pustovoitova – PhD (Philology), Associate Professor, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Sergei A. Fedoseev – DrSc (Eng.), Professor, Perm National Research Polytechnic University, Perm, Russia.

1. Nesterov V.A., Sukhanov A.S. Modeling of a composite truss core of the base module of the upper stage. Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred: materialy XXI Mezhdunarodnogo simpoziuma im. A.G. Gorshkova [Dynamic and Technological Problems of Mechanics of Structures and Continuous Media: Proceedings of the 21st Gorshkov International Symposium]. Moscow: LLC TRP, 2015, pp. 148-149. (In Russ.)

2. Volkov-Bogorodsky D.B., Vlasov A.N. Modeling of hyperelastic composites with small additives of dispersed fillers. Large-scale effects in nanocomposites. Available at: https://tesis.com.ru/infocenter/downloads/ abaqus/abaqus_es15_7.pdf

3. Borovkov A.I., Mamchits D.V., Nemov A.S., Novokshenov A.D. Tasks of modeling and optimization of variable stiffness panels and structures made of layered composites. Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela [Proceedings of the Russian Academy of Sciences. Solid State Mechanics]. 2018;(1):113-122. (In Russ.)

4. Wu D.J., Mei Z., Zhu Y., Hu H. Development of an ABAQUS™ plug-in for predicting composite plates stiffness with in-plane periodicity. SoftwareX. 2023;21(6):Article ID 101281. DOI:10.1016/j.softx. 2022.101281

5. Konstantinov D.V., Matveev S.V., Pesin A.M., Korchunov A.G., Pivovarova K.G. Application of interlocking structures: FEM-based concept demonstration. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2023;21(1):93-99. (In Russ.) DOI:10.18503/1995-2732-2023-21-1-93-99

6. Pesin A., Pustovoitov D., Biryukova O., Ilyina N. FEM simulation of fabrication of Al-steel layered composites with mechanical bonding through the interfacial concavo-convex lock effect. Procedia Manufacturing. 2020;50(1):579-583. DOI:10.1016/j.promfg.2020. 08.104

7. Pesin A.M., Pustovoitov D.O., Biryukova O.D., Kozhemyakina A.E. Asymmetric rolling of sheets and narrow strips: history and prospects of development. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya. [Bulletin of South Ural State University. Series: Metallurgy]. 2020;20(3):81-96. (In Russ.)

8. Pesin A.M., Pustovoitov D.O., Pivovarova K.G., Tandon P., Kozhemyakina A.E. Features of the process of accumulative roll bonding of multilayer metal materials. Teoriya i tekhnologiya metallurgicheskogo proizvodstva [Theory and Technology of Metallurgical Production]. 2020;(3(34)):31-36. (In Russ.)

9. Moreira J.A., Moleiro F., Araújo A.L., Pagani A. Assessment of layerwise user-elements in Abaqus for static and free vibration analysis of variable stiffness composite laminates. Composite Structures. 2023;303:Article ID 116291. DOI:10.1016/j.compstruct. 2022.116291

10. Cho H., Kim D.N. Controlling the stiffness of bistable kirigami surfaces via spatially varying hinges. Materials & Design. 2023;231:Article ID 112053. DOI:10.1016/ j.matdes.2023.112053

11. Ojo S.O., Zucco G., Weaver P.M. Efficient three-dimensional geometrically nonlinear analysis of variable stiffness composite beams using strong Unified Formulation. Thin-Walled Structures. 2021;163:Article ID 107672. DOI:10.1016/j.tws.2021.107672

12. Gurevich L.M., Trykov Yu.P., Volchkov V.M., Kiselev O.S., Danchenko V.F., Pisarev S.P. Modeling of deformation processes of layered titanium-aluminum composites during bending. Izvestiya VolgGTU [Izvestia of Volgograd State Technical University]. 2012;(9):11-15. (In Russ.)

13. Gurevich L.M., Danenko V.F., Pisarev S.P. Influence of the parameters of the wave profile of the joint boundary of titanium-aluminum composite layers on stress behavior. Izvestiya VolgGTU [Izvestia of Volgograd State Technical University]. 2021;(4):48-54. (In Russ.) DOI:10.35211/1990-5297-2021-4-251-48-54

14. Komarov V.A. Increasing stiffness of structures by topological means. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsionalnogo issledovatelskogo universiteta) [Bulletin of Korolev Samara State Aerospace University (National Research University)]. 2003;(1):24-37. (In Russ.)

15. Tretyakov A.V., Zyuzin V.I. Mekhanicheskie svoystva metallov i splavov pri obrabotke davleniem [Mechanical properties of metals and alloys during metal forming]. Moscow: Metallurgiya, 1973, 224 p. (In Russ.)