DOI: 10.18503/1995-2732-2021-19-4-36-44
Abstract
Problem Statement (Relevance). The Ural region has been a metallurgical center of Russia for over 300 years, resulting in accumulating a large volume of man-made waste (slag) for such a long period. The study of the material composition of slag is a currently important task, since before disposing of slags, their mineral composition should be assessed. Many slags are potential ores that can be further processed; some of them are technology-related refractories, etc. Objectives. The research is aimed at studying the material (mineral) composition of slags of the Staroutkinsky Metallurgical Plant formed when producing ferromanganophosphorus. Methods Applied. A chemical composition of rock-forming and ore minerals is established using a JSM-6390LV Scanning Electron Microscope by Jeol with INCA Energy 450 X-Max 80, an energy-dispersive attachment, by Oxford Instruments (the Institute of Geology and Geochemistry, the Ural Branch of the Russian Academy of Sciences, Yekaterinburg). To carry out the analysis, the authors used polished petrographic thin sections cut from pieces of slag. Originality. A material composition of the slags was studied from a point of view of classical mineralogy, using the modern mandatory nomenclature of the International Mineralogical Association. Findings. For the first time, the authors studied mineralogy of slags at the Staroutkinsky Metallurgical Plant formed when producing ferromanganophosphorus. It has been found that they are composed of a glaucochroite-larnite aggregate with a significant content of akermanite, glass and the constant presence of rankinite, alabandite, and dimanganese phosphide (Mn2P). These slags are wastes of ferromanganophosphorus production, and their formation temperature is within the narrow limits of 1420 to 1410°C. Practical Relevance. The slags under our study can be recycled. All slag can be completely processed by detailed separation. The separated glaucochroite, alabandite and dimanganese phosphide are an additional source of producing manganese, and the rest of the minerals (akermanite, larnite, and rankinite) and glass can be used as binders in cement production.
Keywords
Akermanite, glaucochroite, larnite, alabandite, mineralogy, slags, the Staroutkinsky Metallurgical Plant.
For citation
Erokhin Yu.V., Ponomarev V.S., Zakharov A.V., Leonova L.V. Material Composition of Slags Formed when Producing Ferromanganophosphorus at the Staroutkinsky Plant. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2021, vol. 19, no. 4, pp. 36–44. https://doi.org/10.18503/1995-2732-2021-19-4-36-44
1. Zapariy V.V. Utkinskiy (Staroutkinskiy) chugunoplavilnyi i zhelezodelatelnyi zavod [The Utkinsky (Staroutkinsky) iron-smelting and iron-making plant]. Bazhovskaya entsiklopediya [Bazhov’s encyclopedia]. Yekaterinburg: Socrates, 2007, pp. 439–443. (In Russ.)
2. Alekseev V.V. (ed.) Metallurgicheskie zavody Urala XVII–XX vv. Entsiklopediya. [Metallurgical plants of the Urals in the 17th–20th centuries. Encyclopedia]. Yekaterinburg: Academic Book Publishing House, 2001, 536 p. (In Russ.)
3. Kimata M. Synthetic Mn-Kilchoanite – a new development in polymorphism of melilite. Miner. Magaz. 50, 3, 511–515 (1986).
4. Kusaka K., Ohmasa M., Hagiya K., Iishi K., Haga N. On variety of the Ca coordination in the incommensurate structure of synthetic iron-bearing åkermanite, Ca2(Mg0.55,Fe0.45)Si2O7. Miner. Journ. 20, 2, 47–58 (1998).
5. Pertsev N.N., Konnikov E.G., Kislov E.V., Orsoev D.A., Nekrasov A.N. Merwinite-facies magnesian skarns in xenoliths from dunite of the Dovyren layered intrusion. Petrologiya [Petrology], 2003, vol. 11, no. 5, pp. 512–523 (In Russ.)
6. Ivanova M.A. Ca-Al-rich inclusions in carbonaceous chondrites: the oldest Solar System objects. Geochemistry, vol. 54, no. 5, pp. 387–402 (2016). doi:10.1134/ S0016702916050037
7. Peretyazhko I.S., Savina E.A., Khromova E.A., Karmanov N.S., Ivanov A.V. Unique clinkers and paralavas from a new Nilga combustion metamorphic complex in Central Mongolia: mineralogy, geochemistry and genesis. Petrology, vol. 26, no. 2, pp. 181–211 (2018). doi:10.1134/S0869591118020054
8. Erokhin Yu.V., Zakharov A.V., Leonova L.V. Material composition of vanadium slags at the Alapayevsk Metallurgical Plant. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2020, vol. 18, no. 2, pp. 13–21. doi:10.18503/1995-2732-2020-18-2-13-21
9. Gorbatova E.A., Kharchenko S.A., Ozhogina E.G., Yakushina O.A. Mineralogy of blast furnace slags. Vestnik IG Komi NTS UrO RAN [Vestnik of the Komi Institute of Geology, the Scientific Center of the Ural Branch of RAS]. 2017, no. 4, pp. 24-28. doi:10.19110/2221-1381-2017-4-24-28
10. Kato A. Glaucochroite-tephroite intergrowth from the Kanoiri mine, Kanuma City, Tochigi Prefecture, Japan. Bull. Nat. Sci. Mus. 17, 4, 119–128 (1991).
11. Pertsev N.N., Laputina I.P. Glaucochroite in skarns at Anakita, Lower Tunguska. Doklady Akademii nauk SSSR [Reports of the USSR Academy of Sciences], 1974, vol. 216, no. 6, pp. 1379–1382. (In Russ.)
12. Leavens P.B., Dunn P.J., Burt D.M. Glaucochroite (olivine, CaMnSiO4) from Franklin, New Jersey: its composition, occurrence, and formation. Amer. Miner. 72, 423–428 (1987).
13. Höbler H.-J., Zahn A. Crystallographic investigations of glaucochroite in an Fe-Mn slag. Cryst. Res. Tech. 23, 1, 107–109 (1988).
14. Baumgartner S.J., Groot D.R. The recovery of manganese products from ferromanganese slag. Jour. South. Afric. Inst. Min. Metall. 114, 331–340 (2014).
15. Mason B. Larnite, scawtite, and hydrogrossular from Tokatoka, New Zealand. Amer. Miner. 42, 379–392 (1957).
16. Sokol E.V., Kokh S.N., Vapnik Y., Thiery V., Korzhova S.A. Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel. Amer. Miner. 99, 7, 1471–1487 (2014).
17. Volzhensky A.V., Burov Yu.S., Kolokolnikov V.S. Mineralnye vyazhushchie veshchestva [Mineral binders]. Moscow: Stroyizdat, 1979, 476 p. (In Russ.)
18. Erokhin Yu.V., Zakharov A.V., Leonova L.V. Slags from the production of chromium cast iron of the Alapaevsk plant (composition and geoecology). Izvestiya vuzov. Gornyy zhurnal [News of the Higher Institutions. Mining Journal], 2020, no. 5, pp. 90–99. (In Russ.)
19. Martinez-Frias J., Benito R., Wilson G., Delgado A., Boyd T., Marti K. Analysis and chemical composition of larnite-rich ultrarefractory materials. Jour. Mater. Proces. Techn. 147, 204–210 (2004).
20. Korolyuk V.N., Lavrentiev Yu.G., Palchik N.A., Reverdatto V.V. The first find of rankinite in the USSR. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva [Transactions of the All-Union Mineralogical Society], 1974, vol. 103, no. 1, pp. 136–139. (In Russ.)
21. Sokol E.V., Novikov I.S., Zateeva S.N., Sharygin V.V., Vapnik E. Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady Earth Sci. 240, 1, 608–614 (2008).
22. Kurdowski W., Szuba J. Hydration of wollastonite and rankinite in hydrothermal conditions. Cemento. 84, 2, 107–116 (1987).
23. Kasina M., Kowalski P.R., Michalik M. Mineral carbonation of metallurgical slags. Mineralogia. 45, 1–2, 27–45 (2015). doi:10.1515/mipo-2015-0002
24. Olivo G.R., Gibbs K. Paragenesis and mineral chemistry of alabandite (MnS) from the Ag-rich Santo Toribio epithermal deposit, Northern Peru. Miner. Magaz. 67, 95–102 (2003).
25. Skinner B.J., Luce F.D. Solid solution of the type (Ca,Mg,Mn,Fe)S and their use as geothermometers for the enstatite chondrites. Amer. Miner. 56, 1269–1296 (1971).
26. Piatak N.M., Seal II R.R. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA. Appl. Geochem. 27, 623–643 (2012).
27. Buseck P.R. Phosphide from meteorites: barringerite, a new iron-nickel mineral. Science. 165, 169–171 (1969).
28. Britvin S.N., Rudashevskii N.S., Krivovichev S.V., Burns P.C., Polekhovsky Y.S. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Amer. Miner. 87, 1245–1249 (2002).
29. Mendybaev R.A., Richter F.M., Davis A.M. Reevaluation of the akermanite-gehlenite binary system. The 37th Lunar and Planetary Science Conf. Abstr., No. 2268. Woodlands (TX), 2006.
30. Mao H., Hillert M., Selleby M., Sundman B. Thermodynamic assessment of the CaO-Al2O3-SiO2 system. Jour. Amer. Ceram. Soc. 89, 1, 298–308 (2006).