Abstract
Problem Statement (Relevance): This article describes the results of a study that looked at copper leaching from the flotation tailings of the gold and copper ore of the Kumbel deposit. Relationships of such parameters as sulfuric acid consumption, duration, temperature, solid-to-liquid ratio, were looked at to identify the best conditions for copper leaching. Use of a ferromagnetic powder catalyst is proposed to intensify the sulfuric acid leaching process. Such catalyst helps reduce the leaching kinetics and the solvent consumption. Objectives: The aim of the research is to identify optimal parameters of sulfuric acid leaching of copper from flotation tailings using a catalyst. Methods Applied: IR spectroscopic, X-ray phase, spectral, chemical (using certified methods) analyses. Originality: For sulfuric acid leaching, a ferromagnetic catalyst was used, which helped increase the leaching rate and reduce the consumption of the solvent. Findings: It was found that leaching the flotation tailings of copper-bearing ores by sulfuric acid solutions in the presence of a ferromagnetic catalyst leads to increased copper recovery. Practical Relevance: The results of this research can be useful for mining enterprises striving to utilize man-made waste with the purpose of expanding their raw material base.
Keywords
Copper, leaching, sulfuric acid, temperature, slurry, intensification, ferromagnetic catalyst, recovery.
1. Avdokhin V.M., Abramov A.A. Okislenie sulfidnykh mineralov v protsessakh obogash-cheniya [Oxidation of sulphide minerals in mineral processing]. Moscow: Nedra, 1989. (In Russ.)
2. Galkin A.A., Kastyuk B.G., Kuznetsova N.N. et al. Kinetika i kataliz [Kinetics and catalysis]. 2001, vol. 42, no. 2, 172–181 p. (In Russ.)
3. Davydova L.A., Tauzhnyanskaya Z.A., Mikhailova S.F. Foreign practices in heap leaching of non-ferrous and precious metals from off-balance ores. Byull. Tsvetnaya metallurgiya [Bulletin. Non-ferrous metallurgy], 1982, no. 19, pp. 19–25. (In Russ.)
4. Denisov M.E., Rudnev B.P., Krylova L.N., Kuchmina Yu.S. Processing of copper ore of the Udokan deposit with preliminary sulfuric acid leaching. Gornyi informatsionno-analiticheskiy byulleten [Mining bulletin], Gornaya kniga LLC, 2015, pp.100–104. (In Russ.)
5. Jones D.L. Sposob izvlecheniya medi iz sernistoy mednoy rudy ili kontsentrata [The method of extracting copper from sulphurous copper ore or concentrate]. Patent RF, no. 2137856, 1994.
6. Druzhinina S.I., Sheveleva L.D., Khramenkova D.P. et al. Changing composition of the off-balance porphyry copper ores of the Kounrad mine dumps during leaching. Tsvetnye metally [Non-ferrous metals], 1992, no. 4, pp. 14–17. (In Russ.)
7. Ivanov V.V. Nanopowders are needed and in demand by the modern market. Rossiyskie nanotekhnologii [Russian nanotechnologies], 2009, vol. 4, no. 1–2, pp. 22–26. (In Russ.)
8. Karazhanov N.A., Makatova I.N., Beisembaev B.B. et al. On the dissolution rate and solubility of chalcocite. Kompleksnoe ispolzovanie mineralnogo syriya [Comprehensive use of minerals], 1980, no. 6, pp. 16–21.
9. Karimova L.M. Combined method of processing off-balance copper sulphide ore. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2014, no. 2, pp. 11–14. (In Russ.)
10. Kerfut D.D. A method for separating, extracting and recovering nickel, cobalt and copper from a sulphide concentrate stimulated with chlorine by pressure oxidation leaching with sulfuric acid. Patent RF, no. 2221881, 2001.
11. Kioresku A.V. Ways to intensify leaching processes by applying microwave radiation. Gornyi informatsionno-analiticheskiy byulleten [Mining bulletin], Gornaya kniga LLC, 2015, pp. 346–350. (In Russ.)
12. Krushkol O.B., Pavlichenko G.A., Sheveleva L.D. et al. Prospects of using combined methods for processing of non-ferrous metal ores. Byull. Tsvetnaya metallurgiya [Bulletin. Non-ferrous metallurgy], 1990, no. 10, pp. 36–39. (In Russ.)
13. Molmakova M.S., Nogaeva K.A., Tusupbaev N.K. Sulfuric acid leaching of copper from the gravity-flotation tailings of the Kumbel deposit. Izvestiya KGTU im. I.Razzakov [Bulletin of Razzakov Kyrgyz State Technical University], no. 28, 2013, p. 278.
14. Molmakova M.S., Nogaeva K.A., Tusupbaev N.K. Sposob sernokislotnogo vyshchelachivaniya medi [Method of sulfuric acid leaching of copper]. Patent KR, no. 1637, 2014.
15. Naboychenko S.S., Smirnov V.I. Gidrometallurgiya medi [Hydrometallurgy of copper]. Moscow: Metallurgiya, 1974, 272 p. (In Russ.)
16. Podvyazkin Yu.A., Shlygin A.I. Study of surface properties of powder metal catalysts and adsorbents by charging curve method. Zh.fiz. khimii [Journal of physical chemistry], 1957, vol. 31, pp. 1305–1310. (In Russ.)
17. Podvyazkin Yu.A., Shlygin A.I. On the charging curves of powder catalysts and adsorbents. Trudy chetvertogo soveshchaniya po elektrokhimii [Proceedings of the fourth meeting on electrochemistry]. Moscow, 1959, pp. 125–128. (In Russ.)
18. Rylnikova M.V., Emelianenko E.A., Angelova E.I. Perspectives on using physical and chemical techniques to intensify copper and zinc leaching processes at mining sites. Gornyi informatsionno-analiticheskiy byulleten [Mining bulletin], Gornaya kniga LLC, 2012, pp. 97–102. (In Russ.)
19. Sokolov I.V., Gorichev I.G., Kuznetsov S.V. Justifying the methods to intensify leaching of copper-bearing minerals in terms of the Lorentz model. Vestnik RUDN, seriya Inzhenernye issledovaniya [Bulletin of the Peoples' Friendship University of Russia, series: Engineering Surveys], 2009, no. 3. (In Russ.)
20. Skopin Yu.A., Sokolsky D.V. Electrochemical surface area measurement of metallic powders. Vest.AN KazSSR [Bulletin of the Academy of Sciences of the Kazakh SSR], 1956, no. 6, pp. 89–91.
21. Scorcelletti V.V. Teoreticheskie osnovy korrozii metallov [Basic theory behind metal corrosion]. Moscow: Khimiya, 1973, 260 p. (In Russ.)
22. Sokolsky D.V. The kinetics of catalytic hydrogenation in the liquid phase. Voprosy khimicheskoy kinetiki, kataliza i reaktsionnoy sposobnosti [Problems of chemical kinetics, catalysis and reactivity]. Moscow, 1955, pp. 588–607. (In Russ.)
23. Storozhenko P.A. Nanopowders: the technology of today. Rossiyskie nanotekhnologii [Russian nanotechnologies], 2009, vol. 4, no. 1–2, pp. 10–15. (In Russ.)
24. Fomchenko N.V., Kainova A.A., Muraviev M.I. Leaching of non-ferrous metals from metallurgical slags by ferric acid solutions obtained by biooxidation. Izvestiya MSTU "MAMI" [Bulletin of the Moscow State Technical University MAMI], Moscow, no. 1 (15), vol. 4, 2013, pp. 119–123. (In Russ.)
25. Khopunov E.A., Gulyaev N.D. Geochemical aspects of hydrometallurgy of man-made materials. Izv. vuzov. Gornyi zhurnal. Uralskoe gornoe obozrenie [Proceedings of Russian Universities. Mining Journal. Ural Mining Review], 1995, no. 55–60. (In Russ.)
26. Tseft A.L. Gidrometallurgicheskie metody pererabotki polimetallicheskogo syriya [Hydrometallurgical methods in polymetallic materials processing]. Alma-Ata: Nauka, 1976, 332 p.
27. Shaw Raymond Walter. Izvlechenie medi iz khalkopirita [Recovery of copper from chalcopyrite]. Application no. 2004116335, 2002.
28. Eric Landre. Overall development of nanotechnology till 2020. Rossiyskie nanotekhnologii [Russian nanotechnologies], 2007, vol. 2, no. 1–2, pp. 8–16. (In Russ.)
29. Chang Chu Vong, Lawson F. The kinetics of leaching covellite in acidic oxygenated sulfate-chloride soltions. Hydrometallyrgy. 1991. 27, no. 3, pp. 269–284.
30. Complex sulfide ores: processing options. Miner Proctss. Grossroads: Problem and prospects: Proc. NATO Adv. Study Inst. Falmouth; 24 March 4 Apr. 1986. Dordrecht e.a. 1986, pp. 157–194.
31. Minoz P.В., Miller J.D., Wodswoth M.E. Reaction Mechnism for the Acid Ferric Sulfate of Chalco-pirite & Metall. Trans. 1979, v. 108, no. 2, v. 1, pp. 149–158.
32. Pang Jinhui, Lui Chunpeng. The kinetics of ferric chloride leaching of sphalerite in the microwave field. Trans. Nonferrous Metals Soc. China. 1992, no. 1, pp. 53–57.