Abstract
This article intends to show efficiency of research using computer technologies and chemical programs. The flotation activity of flotation reagents of a new class was studied. Molecular modelling of the modified reagents was performed applying computer parametres. Flotation tests were carried out on calcite, barite, celestine, fluorite and quartz. The reagents under study were tested at flotation of various fluorite ores. To optimize the flotation of the fluorite ores, combinations of reagents were used. The tests showed that a combination of reagents at such flotation of fluorite ores would contribute to production of a fluorite concentrate with the CaF2 mass fraction of 96.3 %, at extraction - CaF2 of 85.4 %.
Keywords
Minerals of alkaline-earth elements, collecting agents, flotation, atomic charges, activity of the collecting agent, molecular modelling.
1. Physico-chemical fundamentals of the theory of flotation. Bogdanov O.S., Golman A. M., Kakovsky I. A. and others. Oksgidril'nye reagenty [Oxyhydryl reagents]. Moscow: Science, 1983. 264 p.
2. Ryaboi V.I. On the surface reactions of flotation reagents with minerals on the basis of their donor-acceptor interaction. Obogashhenie rud [Ore dressing]. 2008, no. 6, pp. 24-30.
3. Ryaboi V.I. Creation and use of more efficient agents based on the physico-chemical presentation. Obogashhenie rud [Ore dressing]. 2002, no. 1, pp. 19-23.
4. Khan G. A., Gabrielova L. I., Vlasova N.S. Flotation reagents and application. Moscow: Mineral resources, 1986, 271 p.
5. Yanis N. A., Ryaboi V.I., Artamonova L. A., Kriveleva E. D., Petrova L. N. Comparison of a collective action of palmitate and brompalmitate in flotation of non-sulphide minerals. Obogashhenie rud tsvetnykh metallov. Chast' 1. Issledovaniya po teorii i tekhnologii obogashheniya rud tsvetnykh metallov [Non-ferrous metal ore dressing. Part 1. Research on the theory and technology of non-ferrous metal ore dressing]. Issue 141. Leningrad: Mekhanobr, 1974, pp. 26-39.
6. Solozhenkin Peter, Solozhenkin Oleg. Computer chemistry flotation of reagents: updating sulphydrylic of collectors carboxyl by acids and tetraphenylantimon (V). Proceedings of the 14th Conference on Environment and Mineral Processing. 2010. Czech Republic, part II, pp. 51-56.
7. Soloviev M. E., Soloviev M. M. Komp'yuternaya khimiya [Computational chemistry]. SOLON-Press Publishing House, 2005, 536 p.
8. Solozhenkin P. M. Solozhenkin O. I. Computer-aided design of sulfhydryl reagents and their derivatives. Tsvetnye metally [Non-ferrous metals]. 2010, no. 7, pp. 11-14.
9. Solozhenkin P. M. Solozhenkin O. I. Computer modeling of the structure of sulfhydryl collecting agents and their derivatives. Obogashhenie rud [Ore dressing]. 2010, no. 4, pp. 31-34.
10. Solozhenkin Peter M., Solozhenkin Oleg I. and Sanda Krausz. Prediction of Efficiency of Flotation Collectors Based on Quantum Chemical Computations. Books of Abstracts. XXVI International Mineral Processing Congress-IMPC -2012. New Delhi, India, 2012, no. 2, p.638.
11. Solozhenkin Peter M. Creative and forecasting of properties effective, less toxic reagents of the flotation reagents on a basis quantum - mechanical representations for the purpose of complex extraction non-ferrous and precious metals. Scientific and technical aspects of environment protection. Survey information. VINITI , Release 1, Moscow, 2013, 120 p.
12. Solozhenkin P.M. Quantum–chemical and molecular-dynamic aspects of forecasting of properties of collectors of metals from productive solutions of nonferrous metals. Proceedings of the international scientific symposium “Week of the miner 2012”. Collection of articles. A special issue of the Mining Informational and Analytical Bulletin (scientific and technical journal). Moscow: Mountain Book Publishing House, 2012, NOR1, pp. 431-455.
13. Solozhenkin P. M., Solozhenkin O.I. Computer modeling of fatty acids. Izvestiya vuzov. Tsvetnaya metallurgiya [News of higher educational institutions. Non-ferrous metallurgy]. 2012, no. 1, pp. 17-21.
14. Degodia E. Yu. Improving the technology of processing of rebellious fluorite ores of the Suranskoe field. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2004, no. 3, pp. 89-92.
15. Chizhevsky V. B., Degodia E. Yu. Development of the technology of processing of rebellious fluorite ores of the Suranskoe field. IV Kongress obogatitelej stran SNG: sb. tez. dokl. [The 4th Congress of Dressers from the CIS countries: collection of abstracts of papers]. Moscow, 2003, pp. 133-135.
16. Degodia E. Yu., Shafakuleva O. P. Study of regularities of fluorite flotation by various collecting agents. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya: materialy Mezhdunarodnoj nauchno-prakticheskoj konferentsii [Scientific basis and practice of processing of ores and industrial raw materials: proceedings of the International Scientific and Practical Conference]. Ekaterinburg, 2006, pp. 114-117.
17. Degodia E. Yu., Bakhareva O. Yu., Zaguzina A. A. The study of the adsorption and flotation activity of various modifications of fluorite. Molodezh'. Nauka. Budushhee: sbornik nauchnykh trudov [Youth. Science. Future: Collection of scientific papers]. Magnitogorsk, 2006, no. 6, pp. 315-317.
18. Chizhevsky V. B., Degodia E. Yu. The increase in the selectivity of cleaning operations by steaming carbonate-fluorite ores of the Suranskoe field. Gornyj informatsionno-analiticheskij byulleten' [Mining Informational and Analytical Bulletin]. Moscow: Moscow State Mining University, 2006, no. 2, pp. 390-392.
19. Solozhenkin P. M. Molecular design of flotation reagents, which are efficient in flotation of non-sulphide ores. Tsvetnye metally [Non-ferrous metals]. 2008, no. 12, pp. 28-33.