ISSN (print) 1995-2732
ISSN (online) 2412-9003

download PDF

DOI: 10.18503/1995-2732-2024-22-4-134-143

Abstract

The paper presents an analysis of organosilicon elastomers modified by multi-walled carbon nanotubes (MWCNTs) with metallised surface, which were synthesised by microwave, and MWCNTs obtained by CVD-technology. The effect of the metallisation of the MWCNT surface on the electrical and thermophysical parameters was analysed. The obtained data showed the thermal stability of the studied samples under the influence of alternating electric voltage due to the stability of the formed structure to electric current. It should be noted that all samples are characterised by the presence of the effect of temperature self-regulation, expressed in a decrease in the power of heat release when the temperature rises to 40°C. Improvement of temperature field distribution for heating element on the basis of organosilicon elastomer containing MWCNTs with surface modification has been established. For MWCNTs without surface modification at ambient temperature -40°C at the 50th cycle the heating element worked at specific electric power equal to 1.1 kW/m2, and at the 100th cycle there was deterioration of structural properties of conductive filler and, as a consequence, decrease of specific power to 0.3 kW/m2. At the same time, the metallisation of MWCNTs allowed to increase the power of the heating element by 27%, caused by the increase of electrical conductivity, due to the larger area of metallic contact between separate MWCNTs, and at the same time to reduce the intensity of degradation of conductive structures after the 100th cycle and more, and thus, to increase the thermal stability of the polymer composite operating at alternating electric voltage. At equal concentration of MWCNTs in elastomers, for metallised MWCNTs much better electrical and thermophysical characteristics are observed, which is connected with improvement of heat transfer processes with simultaneous improvement of electrical conductivity.

Keywords

catalyst, multi-walled carbon nanotubes (MWCNTs), organosilicon elastomer, surface metallization, temperature field, microwave synthesis, CVD method

For citation

Shchegolkov A.V., Shchegolkov A.V., Zemtsova N.V., Nikulin P.N. Comparative Analysis Of Organosilicon Elastomers Modified With Multi-Walled Carbon Nanotubes Produced By Microwave And Cvd-Technology. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2024, vol. 22, no. 4, pp. 134-143. https://doi.org/10.18503/1995-2732-2024-22-4-134-143

Alexander V. Shchegolkov – PhD (Eng.), Associate Professor, Tambov State Technical University, Tambov, Russia. Еmail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0000-0002-4317-0689

Aleksei V. Shchegolkov – PhD (Eng.), Engineer, Moscow Polytechnic University, Moscow, Russia. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0000-0002-1838-3842

Natalia V. Zemtsova – Postgraduate Student, Tambov State Technical University, Tambov, Russia. Еmail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0000-0002-5274-6133

Pavel N. Nikulin – Postgraduate Student, Tambov State Technical University, Tambov, Russia. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0009-0007-6041-014X

1. Kowalewska, A., Majewska-Smolarek, K. Synergistic Self-Healing Enhancement in Multifunctional Silicone Elastomers and Their Application in Smart Materials. Polymers. 2024.16, 487. DOI: 10.3390/ polym16040487

2. Dua S., Arora N., Prakashaiah B.G., Saxena R.C., Ganguly S.K., Senthilkumar T. Conjugated polymer-based composites for anti-corrosion applications. Progress in Organic Coatings. 2024;188:108231. DOI: 10.1016/j.porgcoat.2024.108231.

3. Liu Z., Zhang Y., Li Y. Superhydrophobic coating for blade surface ice-phobic properties of wind turbines: A review. Progress in Organic Coatings. 2024;187:108145. DOI: 10.1016/j.porgcoat.2023.108145.

4. Musa A.A., Onwualu A.P. Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction. Heliyon. 2024;10(3):e24683. DOI: 10.1016/j.heliyon.2024.e24683.

5. Hiremath V.S., Reddy D.M., Mutra R.R., Sajeev A., Dhilipkumar T., Naveen J. Thermal degradation and fire retardant behaviour of natural fibre reinforced polymeric composites - A Comprehensive Review. Journal of Materials Research and Technology. 2024. DOI: 10.1016/j.jmrt.2024.04.085.

6. Goyal M., Singh K., Bhatnagar N. Conductive polymers: A multipurpose material for protecting coating. Progress in Organic Coatings. 2024;187:108083. DOI: 10.1016/j.porgcoat.2023.108083.

7. Kumar A., Kumar N. A review on the electrically conductive transparent polymer composites: Materials and applications. Materials Today: Proceedings. 2023. DOI: 10.1016/j.matpr.2023.07.211.

8. Al-Saleh M.H., Al-Sharman M.M. Influence of carbon nanofiller geometry on EMI shielding and electrical percolation behaviors of polymer composites. Synthetic Metals. 2023;294:117314. DOI: 10.1016/j.synthmet.2023.117314.

9. Wang L., Yang C., Wang X., Shen J., Sun W., Wang J., Yang G., Cheng Y., Wang Z. Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing. 2023;164:107320. DOI: 10.1016/j.compositesa.2022.107320.

10. Savastru D., Baschir L., Miclos S., Savastru R., Lancranjan I.I. Smart composite using fibre optic sensors for fluid flow characterization and temperature measurement. Composite Structures. 2023;304(1):116382. DOI: 10.1016/j.compstruct.2022.116382.

11. Savastru D., Miclos S., Savastru R., Lancranjan I.I. Study of thermo-mechanical characteristics of polymer composite materials with embedded optical fibre. Composite Structures. 2018;183:682-687. DOI: 10.1016/j.compstruct.2017.09.042.

12. Ali Z., Yaqoob S., Yu J., D'Amore A. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Composites Part C: Open Access. 2024;13:100434. DOI: 10.1016/j.jcomc.2024.100434.

13. Ma P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing. 2010;41(10):1345-1367. DOI: 10.1016/j.compositesa.2010.07.003.

14. Wang M., Tang X.-H., Cai J.-H., Wu H., Shen J.-B., Guo S.-Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon. 2021;177:377-402. DOI: 10.1016/j.carbon.2021.02.047.

15. Zhang L., Yang D., Li Z., Zhai Z., Li X., de La Vega J., Wang D.-Y. Ultrafine iron oxide decorated mesoporous carbon nanotubes as highly efficient flame retardant in epoxy nanocomposites via catalytic charring effect. Sustainable Materials and Technologies. 2024;39:e00845. DOI: 10.1016/j.susmat.2024.e00845.

16. Al-Kindi U.S.H., Al-Harthi S.H., Myint M.T.Z., Kyaw H.H., Widatallah H.M., Elzain M.E. The morphology and magnetic properties of iron nanoclusters decorated multiwall carbon nanotubes. Materials Research Bulletin. 2023;158:112061. DOI: 10.1016/j.materresbull.2022.112061.

17. FAN X.-j., LI X. Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles. New Carbon Materials. 2012;27(2):111-116. DOI: 10.1016/S1872-5805(12)60007-9.

18. Hamelian M., Varmira K., Veisi H. Synthesis heterogeneous and recyclable magnetic nanocatalysts by decorated amino-modified multi-walled carbon nanotubes with iron and silver nanoparticles (MWCNTs-NH2/Fe3O4/Ag NPs) for organic dyes reduction. Inorganic Chemistry Communications. 2023;158(1):111566. DOI: 10.1016/j.inoche.2023.111566.

19. Hiremath V.S., Reddy D.M., Mutra R.R., Sajeev A., Dhilipkumar T., Naveen J. Thermal degradation and fire retardant behaviour of natural fibre reinforced polymeric composites - A Comprehensive Review. Journal of Materials Research and Technology. 2024. DOI: 10.1016/j.jmrt.2024.04.085.

20. Chen X., Xiao J., Wang J., Deng D., Hu Y., Zhou J., Yu L., Heine T., Pan X., Bao X.Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy - Electronic supplementary information (ESI) available: Experimental details, computational details and Fig. S1–S10. Chemical Science. 2015;6(5):3262-3267. DOI: 10.1039/c5sc00353a.

21. Lobo Guerrero A., Rebollo-Plata B., Gallegos J.H.G. et al. Study of bamboo-type carbon nanotubes with magnetic iron carbide nanoparticles fabricated by a modified CVD method. J Nanopart Res 23, 94 (2021). DOI: 10.1007/s11051-021-05207-3

22. Shchegolkov A.V., Shchegolkov A.V., Chumak M.A. et al. Synthesis of carbon nanotubes using microwave radiation to modify elastomer with improved electrical and thermal conductivity. Perspektivnye materialy [Promising materials]. 2024;(4):54-65. (In Russ.) DOI: 10.30791/1028-978X-2024-4-54-65.

23. Karavaeva N.M., Pershin Yu.V., Kodolov V.I. Properties and high reactivity of metal/carbon nanocomposites. Vestnik Tekhnologicheskogo universiteta [Bulletin of the Technological University], 2017;20(19):54-56. (In Russ.)

24. Trineeva V.V., Pershin Yu.V., Bystrov S.G., Kodolov V.I. Study of the effect of ultra-small amounts of metal/carbon nanocomposite on the polycarbonate structure. Khimicheskaya fizika i mezoskopiya [Chemical physics and mesoscopy], 2015;17(1):126-131. (In Russ.)

25. Li X., Zhang L., Tan R. P., Fazzini P.-F., Hungria T., Durand J., Sbastien Lachaize, Wen-Hua Sun, Marc Respaud, Soulantica Katerina, Serp P. Isoprene Polymerization on Iron Nanoparticles Confined in Carbon Nanotubes. Chemistry - A European Journal. 2015;21(48):17437-17444. DOI: 10.1002/chem.201501165

26. Li X., Hungria T., Garcia Marcelot C., Axet M. R., Fazzini P.-F., Tan R. P., …, Soulantica K. Confinement effects on the shape and composition of bimetallic nano-objects in carbon nanotubes. Chemical Communications. 2016;52(11):2362-2365. DOI: 10.1039/c5cc09037g

27. Mugilgeethan Vijendran, Ryosuke Matsumoto, Shinya Taketomi. New understanding of one-dimensional thermal glide of a nano-sized prismatic dislocation loop in bcc iron: an atomic scale study. Materials Today Communications. 2023;37:107387. DOI: 10.1016/j.mtcomm.2023.107387

28. Ali I., Shchegolkov A.V., Shchegolkov A.V., Chumak M., Nashchekin A., Likhachev K., Imanova G., Kurniawan T.A., Habila M.A. Facile microwave synthesis of multi-walled carbon nanotubes for modification of elastomer used as heaters. Polymer Engineering & Science. 2023;63:1-11.

29. Shchegolkov А.V., Lipkin М.S., Shchegolkov А.V., Semenkova А. Application of carbon nanotubes produced by CVD-method for supercapacitor with LiPF6-based electrolyte. Voprosy Materialovedeniya [Questions of materials science], 2022;(1(109)):64-76. (In Russ.) DOI: 10.22349/1994-6716-2022-109-1-64-76