DOI: 10.18503/1995-2732-2024-22-1-29-38
Abstract
Problem Statement (Relevance). Zinc-containing intermediate products of metallurgy pose a high environmental hazard, remaining a potential alternative source of zinc and related metals. Objectives. The research is aimed at studying the kinetic patterns of zinc leaching from the composition of CaO·ZnO formed by sintering the dust of electric arc furnaces with limestone. Methods Applied. The subject of the study was sintered dust of electric arc furnaces with limestone, which was leached with caustic soda. The initial materials were analyzed by atomic emission spectral methods with inductively coupled plasma and a spark source of spectrum excitation, and by the X-ray phase method. Originality. Sintered dust, showing a percentage composition of 11.9 Zn; 28.5 Ca; 16.6 Fe; 0.38 Mg; 0.14 Pb; 0.05 Cl, was produced to convert zinc into an easily soluble form of CaO·ZnO. Results. Leaching of the sinter was carried out under the following conditions: initial zinc concentration Co = 0.202-0.456 g-ion/dm3; alkali concentration was 9.2 mol/dm3 NaOH; a solid-liquid ratio was 4-9; pulp mixing rate V = 20 rad.s‒1; temperature T = 333-363 K; duration τ = 2.5 h. Zinc passed into the solution in the form of sodium tetrahydroxocincate Na2[Zn(OH)4], and calcium remained in slightly soluble residue Ca(OH)2, which interacts with CO2 and forms insoluble calcium carbonate CaCO3. The leaching mode of the sinter corresponds to the kinetic mechanism, when the rate of the process is determined by the chemical reaction of zinc dissolution with an activation energy value of E = 41.57 kJ/mol. Practical Relevance. The obtained information contributes to determining ways to intensify the process: additional grinding of the solid phase before alkali treatment; periodic or continuous activation of the surface of the dispersed particles to remove the film of reaction by-products: hydroxides of metal impurities and calcium carbonate; increase in pulp temperature; and transfer of the extracted target element into the form of a highly soluble compound.
Keywords
electric arc furnace dust, limestone, roasting, zinc, leaching, caustic soda, kinetics, external diffusion, activation energy, concentration, mixing rate, temperature
For citation
Yakornov S.A., Maltsev G.I., Voinkov R.S., Grebneva A.A. A Kinetic Mode of Zinc Leaching with Alkali. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2024, vol. 22, no. 1, pp. 29-38. https://doi.org/10.18503/1995-2732-2024-22-1-29-38
1. Chairaksa-Fujimoto R., Maruyama K., Miki T., Nagasaka T. The selective alkaline leaching of zinc oxide from electric arc furnace dust pre-treated with calcium oxide. Hydrometallurgy. 2016;159:120-125. https://doi.org/10.1016/j.hydromet.2015.11.009
2. Havlík T., Souza B.V., Bernardes A.M., Schneider I.A.H. Hydrometallurgical processing of carbon steel EAF dust. Journal of Hazardous Materials. 2006;135(1-3):311-318. https://doi.org/10.1016/j.jhazmat. 2005.11.067
3. Pickles C.A. Thermodynamic modelling of the formation of zinc–manganese ferrite spinel in electric arc furnace dust. Journal of Hazardous Materials. 2010;179(1-3):309-317. https://doi.org/10.1016/j.jhazmat. 2010.03.005
4. Martins F.M., Neto J.M.R., Cunha C.J. Mineral phases of weathered and recent electric arc furnace dust. Journal of Hazardous Materials. 2008;154(1-3):417-425. https://doi.org/ 10.1016/j.jhazmat.2007.10.041
5. Orhan G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy. 2005;78(3-4):236-245. https://doi.org/ 10.1016/j.hydromet. 2005.03.002
6. Pereira C.F., Galiano Y.L., Rodríguez-Piñero M.A., Parapar J.V. Long and short-term performance of a stabilized/solidified electric arc furnace dust. Journal of Hazardous Materials. 2007;148(3):701-707. https://doi.org/10.1016/j.jhazmat.2007.03.034
7. Dutra A.J.B., Paiva P.R.P., Tavares L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Minerals Engineering. 2006;19(5):478-485. https://doi.org/10.1016/j.mineng.2005.08.013
8. Oustadakis P., Tsakiridis P.E., Katsiapi A., Agatzini-Leonardou S. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid. Journal of Hazardous Materials. 2010;179(1-3):1-7. https://doi.org/10.1016/ j.jhazmat.2010.01.059
9. Leclerc N., Meux E., Lecuire J.-M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy. 2003;70(1-3):175-183. https://doi.org/10.1016/ S0304-386X(03)00079-3
10. Ruiz O., Clemente C., Alonso M., Alguacil F.J. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. Journal of Hazardous Materials. 2007;141(1):33-36. https://doi.org/10.1016/j.jhazmat. 2006.06.079
11. Pickles C.A. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust. Journal of Hazardous Materials. 2008;150(2):265-278. https://doi.org/10.1016/j.jhazmat.2007.04.097
12. Pickles C.A. Thermodynamic analysis of the selective chlorination of electric arc furnace dust. Journal of Hazardous Materials. 2009;166(2-3):1030-1042. https://doi.org/10.1016/j.jhazmat. 2008.11.110
13. Gunter М., Vopel K.-H., Janssen W. Untersuchungen zur Verwertung von Stauben und Schlammer aus den Abgasreinigungen von Hochofen- und Blasstahlwerken im Drehrohrofen. Stahl und Eisen. 1976;96(24):1228-1238.
14. Caravaca C., Cobo A., Alguacil F.J. Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes. Resources, Conservation and Recycling. 1994;10(1-2):35-41. https://doi.org/10.1016/0921-3449 (94)90036-1
15. Cruells M., Roca A., Núnẽz C. Electric arc furnace flue dusts: characterization and leaching with sulphuric acid. Hydrometallurgy. 1992;31(3):213-231. https://doi.org/10.1016/0304-386X(92) 90119-K
16. Langová Š., Leško J., Matýsek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy. 2009;95(3-4):179-182. https://doi.org/10.1016/ j.hydromet.2008.05.040
17. Larba R., Boukerche I., Alane N., Habbache N., Djerad S., Tifouti L. Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy. 2013;134-135:117-123. https://doi.org/10.1016/ j.hydromet.2013.02.002
18. Havlik T., Turzakova M., Stopic S., Friedrich B. Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy. 2005;77(1-2):41-50. https://doi.org/10.1016/j.hydromet.2004.10.008
19. Yoshida T. Leaching of zinc oxide in acidic solution. Materials Transactions. 2003;44(12):2489-2493. https://doi.org/10.2320/matertrans.44.2489
20. Özverdİ A., Erdem M. Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment. Hydrometallurgy. 2010;100(3-4):103-109. https://doi.org/10.1016/ j.hydromet.2009.10.011
21. Cruells M., Roca A., Núnẽz C. Electric arc furnace flue dusts: characterization and leaching with sulphuric acid. Hydrometallurgy. 1992;31(3):213-231. https://doi.org/10.1016/0304-386X (92)90119-K
22. Langová Š., Riplová J., Vallová S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy. 2007;87(3-4):157-162. https://doi.org/10.1016/ j.hydromet.2007.03.002
23. Tsakiridis P.E., Oustadakis P., Katsiapi A., Agatzini-Leonardou S. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: downstream processing and zinc recovery by electrowinning. Journal of Hazardous Materials. 2010;179(1-3):8-14. https://doi.org/10.1016/j.jhazmat. 2010.04.004
24. Langová Š., Matỳsek D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy. 2010;101(3-4):171-173. https://doi.org/10.1016/j.hydromet.2010.01.003
25. Xanthopoulos P., Agatzini-Leonardou S., Oustadakis P., Tsakiridis P.E. Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation. Journal of Environmental Chemical Engineering. 2017;5(4):3550-3559. https://doi.org/10.1016/j.jece. 2017.07.023
26. Kasymova A.S., Abisheva Z.S., Zhumartbaev E.U., Ponomareva E.I. Kinetics of gallium leaching with sulfuric acid from a phosphorus-containing product. Izvestiya vuzov. Tsvetnaya metallurgiya [News of Universities. Non-Ferrous Metallurgy]. 1990;(6):72-75. (In Russ.)
27. Chirkst D.E., Cheremisina O.V., Chistyakov A.A., Balyan G.A. Kinetics of zinc leaching from lead-copper slag. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya [News of Universities. Chemistry and Chemical Technology]. 2006;49(10):35-38. (In Russ.)
28. Kakovsky I.A., Potashnikov Yu.M. Kinetika protsessov rastvoreniya [Kinetics of dissolution processes]. Moscow: Metallurgy, 1975, 224 p. (In Russ.)
29. Kakovsky I.A., Naboichenko S.S. Termodinamika i kinetika gidrometallurgicheskikh protsessov [Thermodynamics and kinetics of hydrometallurgical processes]. Alma-Ata: Nauka, 1986, 272 p. (In Russ.)