DOI: 10.18503/1995-2732-2023-21-4-81-92
Abstract
This paper presents the research of a functional material based on an elastomer with nano- and microsized conductive additives for electric heating with a self-regulating temperature effect. The functional purpose of nanomodified elastomers is application in various technological applications: microelectronics, power engineering and automotive engineering. Nanomodified elastomers and synthesized multi-wall carbon nanotubes (MWCNT) were studied by scanning and transmission electron microscopy, energy dispersive spectroscopy (EDS), Raman spectroscopy, and modern noncontact methods of analyzing temperature fields, thermal conductivity, thermal diffusivity, and electrophysical parameters. Elastomers were modified using MWCNT synthesized with Fe-0.7Co/2.1Al2O3 catalytic system. MWCNT are a formation consisting of two types of nanomaterials: large oriented CNT and smaller CNT wrapped around them. Large nanotubes are characterized by thicknesses with small variations in the range of 35-50 nm, a uniform structure and wall thickness, and a specific surface area of 290 ± 10 m2/g. In addition, single embedded catalyst particles ranging from 15 to 30 nm were recorded inside the nanotubes. Thermal conductivity of the elastomers modified with MWCNT and trace amounts of iron changes from 2.88-1 to 3.36 ·10-1 at a mass concentrations of iron from 1 to 8% and thermal conductivity changes from 4.98-7 to 6.3-7 m2/s at the same mass concentration. Temperature field dynamics shows a monotonic temperature increase, reaching a maximum temperature of 90.7 °C. The presented mode with a supply voltage of 13.5 V is optimal for elastomers with Fe additives with a mass concentration of 8 wt.% and MWCNT of 1 wt.% because an increase in supply voltage to 15.8 V causes heating to 159 °С, which is the limit value of thermal stability for the elastomer matrix. In case of a lower MWCNT mass concentration (1 wt.%), it is possible to provide operating modes with voltages of up to 30.3 V, when temperature will not exceed 74.2 °С, but total power at such concentration of MWCNT for the heater will be lower. It has been established that composites based on microsized iron and MWCNT are characterized by heating up to 90°C for 114 s from an initial temperature of 25 °C, while an increase in the concentration of MWCNT up to 8% results in the surface temperature increase to 150 °C for 7.14 s from 25 °C. Microsized iron in the elastomer is structurally embedded as spherical inclusions.
Keywords
microsized nanofillers, modification, iron, carbon nanotubes, elastomers, thermal conductivity, electrical conductivity, thermal field
For citation
Shchegolkov A.V., Shchegolkov A.V., Zemtsova N.V., Komarov F.F., Parfimovich I.D. Influence of Microsized Metal Fillers on Thermal and Electrophysical Properties of Nanomodified Elastomers. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2023, vol. 21, no. 4, pp. 81-92. https://doi.org/10.18503/1995-2732-2023-21-4-81-92
1. Yu T., Lü X., Bao W. High electrical self-healing flexible strain sensor based on MWCNT-polydimethylsiloxane elastomer with high gauge factor and wide measurement range. Composites Science and Technology. 2023;238:110049. DOI: 10.1016/ j.compscitech.2023.110049
2. Tian Y., Zhang X., Geng H.-Z., Yang H.-J., Li C., Da S.-X., Lu X., Wanga J., Jia S.-L. Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC Advances. 2017;7(83):53018-53024. DOI: 10.1039/C7RA10092B
3. Kuila C., Maji A., Murmu N.C., Kuila T., Srivastava S.K. Recent advancements in carbonaceous nanomaterials for multifunctional broadband electromagnetic interference shielding and wearable devices. Carbon. 2023;210:118075. DOI: 10.1016/j.carbon. 2023.118075
4. Liu X.-L., Li M., Geng W.-H., Cao W., Tian Y.-H., Li T.-Y., Bin P.-S., Qian P.-F., Geng H.-Z. Modified carbon anotubes/polyvinyl alcohol composite electrothermal films. Surfaces and Interfaces. 2023;36:102540. DOI: 10.1016/j.surfin.2022.102540
5. Xu F., Aouraghe M.A., Xie X., Zheng L., Zhang K., Fu K.K. Highly stretchable, fast thermal response carbon nanotube composite heater. Composites Part A: Applied Science and Manufacturing. 2021;147:106471. DOI: 10.1016/j.compositesa.2021.106471
6. Wang Z.-Y., Sun X., Wang Y., Liu J.-D., Zhang C., Zhao Z.-B., Du X.-Y. Fabrication of high-performance thermally conductive and electrically insulating polymer composites with siloxane/multi-walled carbon nanotube core-shell hybrids at low filler content. Polymer. 2022;262:125430. DOI: 10.1016/ j.polymer.2022.125430
7. Li X., Wu B., Chen P., Xia R., Qian J. Covalently interconnected carbon nanotubes network enhancing thermal conductivity of EP-based composite. Composites Communications. 2023;40:101591. DOI: 10.1016/ j.coco.2023.101591
8. Jin L., Zhou C.B. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters. 1998;73:1197-1199.
9. Matarredona O., Rhoads H. et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. Journal of Physical Chemistry B. 2003;107(48):13357-13367.
10. Vaisman L., Wagner H.D. et al. The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science. 2006;128:37-46.
11. Huang J., Mao C., Zhu Y., Jiang W., Yang X. Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon. 2014;73:267-274. DOI: 10.1016/ j.carbon.2014.02.063
12. Farhadpour M., Pircheraghi G., Marouf B.T., Bagheri R. Enhancing the electrical conductivity of PA6/PPO/CNT/CCB nanocomposites via control of PA6 transcrystalline layer formation, morphology, and selective localization of nanofillers. Polymer Testing. 2023;121:107978. DOI: 10.1016/j.polymertesting. 2023.107978
13. Huang B., Wang Z., Tu J., Liu C., Xu P., Ding Y. Interfacial distribution and compatibilization of imidazolium functionalized CNTs in poly(lactic acid)/polycaprolactone composites with excellent EMI shielding and mechanical properties. International Journal of Biological Macromolecules. 2023;227:1182-1190. DOI: 10.1016/j.ijbiomac.2022.11.304
14. Shen Y., Zhang T.-T., Yang J.-H., Zhang N., Huang T., Wang Y. Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polymer Composites. 2015;38(9). DOI: 10.1002/pc.23769
15. Tao J.-R., Luo C.-L., Huang M.-L., Weng Y.-X., Wang M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites Part A: Applied Science and Manufacturing. 2023;164:107304. DOI: 10.1016/j.compositesa. 2022.107304
16. Lempa E., Graßmann C., Rabe M., Schwarz-Pfeiffer A., van Langenhove L. Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions. IOP Conference Series: Materials Science and Engineering. 2017;254(2), 022006. DOI: 10.1088/ 1757-899X/254/2/022006
17. Lempa E., Rabe M., van Langenhove L. Dispenser printing with electrically conductive microparticles. Solid State Phenomena. Trans Tech Publications, Ltd. 2022;333:31-38. DOI: 10.4028/p-zs1155
18. Shetty H.D., Ashok Reddy G.V., Ramasamy V., Kaliprasad C.S., Daruka Prasad B., Yogananda H.S., Naik R., Prasad V., Koyyada G., Kumar Y.A. Electrical conductivity and electromagnetic interference shielding effectiveness of elastomer composites: Comparative study with various filler systems. Inorganic Chemistry Communications. 2023;151:110578. DOI: 10.1016/j.inoche.2023.110578
19. Shchegolkov A.V., Shchegolkov A.V., Zemtsova N.V. Investigation of heat release in nanomodified elastomers during stretching and torsion under the action of electric voltage. Frontier Materials & Technologies. 2022;(2):121-132.
20. Shchegolkov A.V., Shchegolkov A.V. Anti-icing systems based on elastomers modified with carbon nanostructures with self-regulating temperature effect. Prirodnye resursy Arktiki i Subarktiki [Arctic and Subarctic Natural Resources]. 2022;27(1):141-151. (In Russ.)
21. He C., Zhao N., Shi C., Li J., Li H. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes. Materials Research Bulletin. 2008;43(8-9):2260-2265. DOI: 10.1016/j.materresbull.2007.08.015
22. Jiang B., Yang W., Wang C., Bai H., Ma G., Li Z., Zhang C., Li S., Chen N., Ta N., Wang X., Li Y. Lightweight porous cobalt-encapsulated nitrogen-doped carbon nanotubes for tunable, efficient and stable electromagnetic waves absorption. Carbon. 2023;202(1):173-186. DOI: 10.1016/j.carbon.2022. 10.032
23. Shchegolkov A.V., Komarov F.F., Lipkin M.S., Milchanin O.V., Parfimovich I.D., Shchegolkov A.V., Semenkova A.V., Velichko A.V., Chebotov K.D., Nokhaeva V.A. Synthesis and study of cathode materials based on carbon nanotubes for lithium-ion batteries. Perspektivnye materialy [Promising Materials]. 2021;2:66-76. (In Russ.) DOI: 10.30791/1028-978X-2021-2-66-76
24. Shchegolkov A.V. The comparative analysis of thermal effects in elastomers modified with MWCNT at DC voltage. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta [Science Vector of Togliatti State University]. 2021;(1(55)):63-73. (In Russ.) DOI: 10.18323/2073-5073-2021-1-63-73
25. Zhu W., Zhao Z., Qiu J. In situ synthesis of Fe-filled carbon nanotubes by a floating CVD method with FeCl3 as catalyst precursor. Carbon. 2009;47(12):2943-0. DOI: 10.1016/j.carbon.2009.06.014