DOI: 10.18503/1995-2732-2023-21-3-42-50
Abstract
Problem Statement (Relevance). The Urals has been a metallurgical center of Russia for several centuries, resulting in large volumes of accumulated slag. The study on the material composition of slags is a relevant task, because before they are disposed of, it is necessary to evaluate their mineral composition. Many slags are potential ore that can be further processed. Objectives. The research is aimed at studying the material (mineral) composition of boron-containing slags from the Klyuchevsky Ferroalloy Plant obtained during the production of ferroboron. Methods Applied. The chemical composition of rock-forming and ore minerals of the slag was determined on a CAMECA SX 100 electron probe microanalyzer with five wave spectrometers (the Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg). To carry out the analysis, we used polished petrographic thin sections cut from pieces of slag. Originality. The study on the material composition of the slags was carried out from the point of view of classical mineralogy, using the modern mandatory nomenclature of the International Mineralogical Association. Findings. The mineralogy of boron-containing slags from the Klyuchevsky Ferroalloy Plant was studied for the first time. It has been established that they are composed of a hibonite-Ca-Al-oxyborate aggregate with a significant content of spinel, corundum and various borides, as well as chromferide and calcium and potassium chloraluminates. These slags are wastes of ferroboron production, and the temperature of their formation is estimated within narrow limits, namely 1350-1460°C. Practical Relevance. The slags studied by us can be used for additional processing, because rock-forming spinel and hibonite, as well as accessory calcium hexaboride, are a good abrasive material, while manganese and iron borides formed as by-products (they are easily separated by magnetic separation) can be further used at a metallurgical processing stage.
Keywords
hibonite, spinel, Ca-Al-oxyborate, borides, mineralogy, slags, Klyuchevsky Ferroalloy Plant
For citation
1. Kuzmin N.V. Klyuchevsky zavod ferrosplavov: k 75-letiyu Klyuchevskogo zavoda ferrosplavov. Entsiklopediya [Klyuchevsky Ferroalloy Plant: to the 75th Anniversary of the Klyuchevsky Ferroalloy Plant. Encyclopedia]. Yekaterinburg: Ural Worker Publishing House, 2016, 519 p. (In Russ.)
2. Perepelitsyn V.A., Rytvin V.M., Koroteev V.A., Makarov A.B., Grigoriev V.G., Gilvarg S.I., Abyzov V.A., Abyzov A.N., Tabulovich F.A. Tekhnogennoe mineralnoe syrie Urala: monografiya [Industry-related mineral raw materials of the Urals: monograph]. Yekaterinburg: Editorial and Publishing Unit of the Ural Branch, Russian Academy of Sciences, 2013, 332 p. (In Russ.)
3. Lapin V.V., Kurtseva N.N., Ostrogorskaya O.P. On spinel, corundum (ruby) and a kind of “β-alumina” in aluminothermic slags. Trudy IGEM AN SSSR [Proceedings of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Academy of Sciences of the USSR]. 1958;30:124-133. (In Russ.)
4. Makarov А.B., Talalay А.G. Industry-related mineral deposits and their ecological role. Litosfera [Lithosphere]. 2012;(1):172-176. (In Russ.)
5. Perepelitsyn V.A., Rytvin V.M., Gilvarg S.I. Low production volume aluminothermic slags of OJSC Klyuchevsky Ferroalloy Plant. Ogneupory i tekhnicheskaya keramika [Refractories and Technical Ceramics]. 2015;(4-5):60-68. (In Russ.)
6. Erokhin Yu.V. Mineralogy of aluminous slag of the Klyuchevsky Ferroalloy Plant. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis]. 2012;(13):65-75. (In Russ.)
7. Erokhin Yu.V., Berzin S.V. Sapphire-hibonite slag from the Klyuchevsky Ferroalloy Plant. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis]. 2014;(15):70-81. (In Russ.)
8. Erokhin Yu.V., Ponomarev V.S., Mikheeva A.V. Spinel slag from the Klyuchevsky Ferroalloy Plant. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis]. 2018;(19):70-80. (In Russ.)
9. Sandiford M., Santosh M. A granulite facies kalsilite-leucite-hibonite association from Punalur, Southern India. Mineralogy and Petrology. 1991;43:225-236.
10. Rakotondrazafy M.A.F., Moine B., Cuney M. Mode of formation of hibonite (CaAl12O19) within the U-Th skarns from the granulites of S-E Madagascar. Contributions to Mineralogy and Petrology. 1996;123:190-201.
11. Simon S.B., Davis A.M., Grossman L., McKeegan K.D. A hibonite-corundum inclusion from Murchison: a first-generation condensate from the Solar Nebula. Meteoritics and Planetary Science. 2002;37:533-548.
12. Hainschwang T., Notari F., Massi L., Armbruster T., Rondeau B., Fritsch E., Nagashima M. Hibonite: a new gem mineral. Gems and Gemology. 2010;46(2):135-138.
13. Egorov-Tismenko Yu.K., Simonov M.A., Belov N.V. On crystal structures of calcioborite Ca2[BO3BO]2 and synthetic calcium boroaluminate 2CaAl[BO3]O = Ca2[AlO3BO]2]. Doklady Akademii nauk SSSR [Reports of the USSR Academy of Sciences]. 1980;251:1122-1123. (In Russ.)
14. Erokhin Yu.V., Ponomarev V.S. Material composition of slags of ferrotungsten production from the Klyuchevsky Plant (the Middle Urals). Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. [Vestnik of Nosov Magnitogorsk State Technical University]. 2022;20(2):44-52. (In Russ.)
15. Lebedev A.M., Sumin N.G. On red spinel from Slyudyanka. Trudy Mineralogicheskogo muzeya AN SSSR [Proceedings of the Mineralogical Museum of the USSR Academy of Sciences]. 1952;4:149-151. (In Russ.)
16. Bjärnborg K., Schmitz B. Large spinel grains in a CM chondrite (Acfer 331): Implications for reconstructions of ancient meteorite fluxes. Meteoritics and Planetary Science. 2013;48(2):180-194. DOI:10.1111/maps.12050
17. Rajesh V.J., Arai S., Santosh M., Tamura A. LREE-rich hibonite in ultrapotassic rocks in Southern India. Lithos. 2010;115:40-50. DOI:10.1016/j.lithos.2009.11.004
18. Samsonov G.V., Serebryakova T.I., Neronov V.A. Boridy [Borides]. Moscow: Atomizdat, 1975, 376 p. (In Russ.)
19. Kiessling R. The borides of manganese. Acta Chemica Scandinavica. 1950;4:146-159.
20. Novgorodova M.I., Gorshkov A.I., Trubkin N.V., Tsepin A.I., Dmitrieva M.T. New natural intermetallic compounds of iron and chromium – chromferide and ferchromide. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva [Proceedings of the All-Union Mineralogical Society]. 1986;115(3):355-359. (In Russ.)
21. Pautov L.A., Popov M.P., Erokhin Yu.V., Khiller V.V., Karpenko V.Yu. Mariinskite BeCr2O4 – a new mineral, a chromium analogue of chrysoberyl. Zapiski Rossiyskogo mineralogicheskogo obshchestva [Proceedings of the Russian Mineralogical Society]. 2012;141(6):43-62. (In Russ.)
22. Panda C., Biswal S.S., Dash P., Jena T., Panda K.C., Sahu D. Study of chromium immobilization behavior in unbound and concrete bound ferrochromium slag. Journal of Material Cycles and Waste Management. 2022;24:528-539. DOI:10.1007/s10163-021-01337-x
23. Erokhin Yu.V., Ponomarev V.S. Chloraluminates in slags produced from ferroboron from the Klyuchevsky plant. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis]. 2020;(21):101-109. (In Russ.)
24. Nesmelov D.D., Lysenkov A.S., Danilovich D.P., Kotsar T.V., Ordanyan S.S. Joint synthesis of heterophase powders in the CaB6 – TiB2 system]. Novye ogneupory [New Refractories]. 2018;(10):31-36. (In Russ.)