ISSN (print) 1995-2732
ISSN (online) 2412-9003


download PDF

DOI: 10.18503/1995-2732-2023-21-3-5-14


Relevance and objective of the study. An increase in the resource potential of the country depends on the expansion of the development of natural and man-made gold-bearing placers of the Far Eastern region, most of which are represented by a clay component with a high content of fine fractions. It is particularly important to develop more advanced systems that ensure the destruction of microstructural bonds of clay minerals. Theoretical studies and calculation methods are being developed for the design of installations that initiate the destruction of the structural bonds of the mineral component in hydraulic mixtures and work on the basis of modulation of hydrodynamic effects with the initiation of shock loads. Objective. Development of a technical solution that provides an increase in the technological level of mineral extraction in the processing of high-clay sands of placers by reducing the loss of small and fine particles of valuable components by introducing installations, activating microdisintegration, into the technological cycle with the formation of hydrodynamic effects that contribute to the strengthening of oscillations by changing the speed mode. Results. The analytical calculation served as a basis for obtaining data on the change in the mass hydrodynamic power and thermodynamic potential of the system in the process of destruction of the mineral component of the hydraulic mixture in the proposed installation, which simulates hydrodynamic effects taking into account the volumetric flow rate of the hydraulic mixture. The paper proposes a process flow chart of processing using a device of a new design for microdisintegration with the subsequent extraction of valuable minerals in thin layer flows by gravity-dynamic method and leaching. The calculations established the parameters for controlling the process of microdisintegration of mineral particles at the first stage of creating turbulence in the generator. The decisive role is attributed to the change in the hydrodynamic force of the jet coming out of the nozzle with the variation of the volumetric flow rate of the hydraulic mixture and the flow rate of the hydraulic mixture. The change in the specific interfacial surface of clay mineral particles also depends on the specific surface energy and the thermodynamic potential of the system. Calculations have established that when using a central centrifugal pump, PR 12.5/12.5-SP, with a volumetric flow rate of a hydraulic mixture of 12 m3/h, the thermodynamic potential of the system increases significantly, stimulating an increase in the specific interfacial surface of the particle system by five orders of magnitude compared to the original values. Conclusions. The development of research on the design of gravity installations of a new type will make it possible to adapt them to use on natural high-clay and man-made placers with a high content of fine gold. The use of a hydrodynamic generator, which activates microdisintegration in hydrodynamic flows, will reduce the loss of fine particles of valuable components and improve the operational performance of the complex maintenance.


high-clay sands, microdisintegration, thermodynamic potential, hydrodynamic generator

For citation

Khrunina N.P. Improving the Design of the Device for Microdisintegration of Mineral Components in Hydraulic Mixtures. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2023, vol. 21, no. 3, pp. 5-14.

Natalia P. Кhrunina – PhD (Eng.), Lead Researcher, Mining Institute, Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID 0000-0001-8117-0922

1. Alekseev V.S., Seryi R.S., Sobolev A.A. Increasing the extraction of fine gold on a sluice-type flushing device. Obogashchenie rud [Ore Enrichment]. 2019;(5):13-18. DOI: 10.17580/or.2019.05.03. (In Russ.)

2. Mirzekhanov G.S., Litvintsev V.S. State and problems of development of man-made placer deposits of precious metals in the Far Eastern region. Gornyi zhurnal [Mining Journal]. 2018;(10):25-30. DOI: 10.17580/ gzh.2018.10.04. (In Russ.)

3. Mamaev Yu.A., Khrunina N.P. Prospects for the development of clay placers of the Amur region. Gornyi informatsionno-analiticheskiy byulleten [Mining Information and Analytical Bulletin]. 2009;(S5):47-57. (In Russ.)

4. Khrunina N.P. Modeling of hydrodynamic effects in microdisintegration of high-clay mineral components in slurries. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2022;20(3):26-34. DOI: 10.18503/1995-2732-2022-20-3-26-34. (In Russ.)

5. Krupskaya L.T., Mamaev Yu.A., Khrunina N.P., Litvintsev V.S., Ponomarchuk G.P. Ekologicheskie osnovy ratsionalnogo zemlepolzovaniya pri osvoenii rossypnykh mestorozhdeniy Dalnego Vostoka [Ecological background of a reasonable land use in the development of placer deposits in the Far East]. Vladivostok: Dalnauka, 1997, 35 p. (In Russ.)

6. Khrunina N.P., Stratechuk O.V. Novye aspekty mikrodezintegratsii vysokoglinistykh peskov rossypnykh i rudno-rossypnykh mestorozhdeniy blagorodnykh metallov Dalnevostochnogo regiona: monografiya [New aspects of microdisintegration of high-clay sands of placer and ore-placer deposits of precious metals of the Far Eastern region: monograph]. Khabarovsk: Publishing House of Pacific National University, 2018, 218 p. ISBN 978-5-7389-2686-0. (In Russ.)

7. Alenichev V.M. Geoinformation support of resource saving in the development of gold-bearing placers. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle [Proceedings of Tula State University. Earth Sciences]. 2020;(4):124-131. DOI: 10.25635/ i0065-1538-8230-i (In Russ.)

8. Karlina A.I. Application of the wet ore autogrinding process for the disintegration of clay and sands of metal-bearing placers. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Irkutsk State Technical University]. 2014;(10):189-195. (In Russ.)

9. Matveev A.I., Shirman G.V. Dynamics of clay pellet formation in the process of disintegration of high-clay sands in the washing drum. Gornyi informatsionno-analiticheskiy byulleten [Mining Information and Analytical Bulletin]. 2011;(10):266-268. (In Russ.)

10. Khrunina N.P., Mamaev Yu.A. Sposob upravleniya protsessom transformatsii zolotosoderzhashchey porody [Method of controlling the process of transformation of gold-bearing rock]. Patent RU, no. 2276727, 2006.

11. Chanturiya V.A., Shadrunova I.V., Gorlova O.E., Kolodezhnaya E.V. Development of technological innovations of deep and complex processing of technogenic raw materials in the context of new economic challenges. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle [Proceedings of Tula State University. Earth Sciences]. 2020;(1):159-171. DOI: 10.46689/ 2218-5194-2020-1-1-159-171. (In Russ.)

12. Khrunina N.P. Grokhot-dezintegrator s intensifikatsiey kavitatsii kombinirovannym vozdeystviem ultrazvuka [A screen-disintegrator with intensification of cavitation by combined exposure to ultrasound]. Patent RU, no. 2200629, 2003.

13. Bakharev S.A., Kozlov A.P. On the use of methods of nonlinear acoustics in the processing of minerals and non-chemical treatment of industrial wastewater. Marksheyderiya i nedropolzovanie [Mine Surveying and Subsoil Use]. 2013;(1(63)):41-49. (In Russ.)

14. Korostovenko V.V., Medved N.V., Morozova E.L., Morozov V.N. Industrial research on the study of the efficiency of screening sands during the introduction of the GIT-32 screen into the scheme of washing installations. Innovatsionnye geotekhnologii pri razrabotke rudnykh i nerudnykh mestorozhdeniy: sb. tr. XI Mezhdunar. nauch.-tekhn. konf. v ramkakh Uralskoy gornopromyshlennoy dekady [Innovative geotechnologies in the development of ore and non-metallic deposits: Proceedings of the 11th International Scientific and Technical Conference as part of the Ural Mining Decade]. Yekaterinburg, 2022, pp. 119-122. (In Russ.)

15. Urakaev F.Kh., Shumskaya L.G., Kirillova E.A., Kondratiev S.A. Possibilities of stage disintegration and mechanical activation in the processes of enrichment of technogenic tin-containing raw materials. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh [Physical and Technical Problems of Mineral Development]. 2021;(3):158-167. DOI: 10.15372/ FTPRPI20210315. (In Russ.)

16. Rochev V.F., Melnikov A.E. Study on the mechanism of destruction of frozen clay rocks in water environment. Uspekhi sovremennogo estestvoznaniya [Advances in Modern Natural Science]. 2018;(12-2):380-384. (In Russ.)

17. Li W., Yang Y., Shi W., Zhao X., Li W. Correction and evaluation of the cavitation model taking into account the thermodynamic effect. Mathematical Problems in Engineering. 2018;(10):1-11. DOI: 10.1155/ 2018/7217513

18. Decaix J., Goncalves E. Simulation of compression effects in turbulent cavitating flows. European Journal of Mechanics. 2013;39:11-31. DOI: 10.1016/ j.euromechflu.2012.12.001.

19. Jing L., Weiling X, Bu C. Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble. Journal of Fluid Mechanics. 2021;919: A16. DOI: 10.1017/jfm.2021.368.

20. Xun Sun, Songying Chen, Jingting Liu, Shan Zhao, Joon Yong Yoon. Hydrodynamic cavitation: a promising technology for the industrial synthesis of nanomaterials.

21. Richard Dvorsky, Jiri Lunacek, Ales Sliva. Dynamics analysis of cavitation disintegration of microparticles during nanopowder preparation in a new Water Jet Mill (WJM) device. Advanced Powder Technology. 2011;22(5):639-643. DOI:10.1016/j.apt.2010.09.008

22. Mukun Li, Hongjian Ni, Guan Wang, Ruihe Wang. Simulation of thermal stress effects in submerged continuous water jets on the optimal standoff distance during rock breaking. Powder Technology. 2017;320:445-456. DOI: 10.1016/j.powtec.2017.07.071

23. Zhang X., Carbone M., Bragg A.D. Lagrangian model for passive scalar gradients in turbulence. Journal of Fluid Mechanics. 2021;964. DOI: 10.1017/jfm.2023.375

24. Dvorski R., Svoboda L., Troykova Y., Bednář J. Cavitation disintegration of microparticles and nanoparticles in dense liquid dispersions. Conference: TechConnect World 2015. 2015;2. DOI: 10.13140/ RG.2.1.3345.9364

25. Ananiev K.M., Alekseeva E.A., Tverdokhlebov V.P. Application of the cavitation method for the purification of produced water from oil fields. Uspekhi sovremennogo estestvoznaniya [Advances in Modern Natural Science]. 2021;(5):45-50. DOI: 10.17513/ use.37623. (In Russ.)

26. Gordeychuk T.V., Kazachek M.V. Effect of nonionic surfactants on NA* emission during sonoluminescence of aqueous NaCl solutions. Zhurnal fizicheskoy khimii [Journal of Physical Chemistry]. 2019;93(5):793-796. DOI: 10.1134/S004445371905011X. (In Russ.)

27. Bulychev N.A., Kirichenko M.N., Averyushkin A.S., Kazaryan M.A. Hydrogen production in acousto-plasma discharge in liquid. Optika atmosfery i okeana [Optics of Atmosphere and Oceans]. 2018;31(3):226-228. DOI: 10.15372/AOO20180313. (In Russ.)

28. Khrunina N.P., Mamaev Yu.A. Geotekhnologicheskiy kompleks s mnogostupenchatoy dezintegratsiey [Geotechnological complex with multistage disintegration]. Patent RU, no. 2209974, 2003.

29. Mamaev Yu.A., Khrunina N.P. Determination of the optimal initial parameters of the sound effect on the pulp in the sump accumulator during the open mining of high-clay placers. Gornyi informatsionno-analiticheskiy byulleten [Mining Information and Analytical Bulletin]. 2009;(7):187-191. (In Russ.)

30. Terekhin B.P., Pastukhov D.M., Pastukhov M.E. Sposob vozbuzhdeniya akusticheskikh kolebaniy v tekuchey srede i ustroystvo (varianty) dlya ego osushchestvleniya [A method for excitation of acoustic vibrations in a fluid medium and a device (options) for its implementation]. Patent RU, no. 2476261, 2013.

31. Khrunina N.P., Mamaev Yu.A., Stratechuk O.V., Khrunin T.О. Mnogourovnevaya ustanovka dlya izvlecheniya tsennykh mineralov [A multi-level installation for the extraction of valuable minerals]. Patent RU, no. 2187373, 2002.

32. Khrunina N.P. Improving the complex of means for the processing of high-clay gold-bearing sands of placers. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2021;19(2):14-22. DOI: 10.18503/1995-2732-2021-19-2-14-22. (In Russ.)

33. Khrunina N.P. Influence of hydrodynamic effects on structural changes in dispersoid in the process of microdisintegration. Nauki o Zemle i nedropolzovanie [Earth Sciences and Subsoil Use]. 2022;45(3(80)):294-304. DOI: 10.21285/2686-9993-2022-45-3-294-304. (In Russ.)

34. Khrunina N.P., Prokhorov K.V. Improvement of processing gold-silver refractory ores of a complex deposit of precious metals. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya [Izvestiya. Non-Ferrous Metallurgy]. 2019;(2):4-12. DOI: 10.17073/ 0021-3438-2019-2-4-12. (In Russ.)