ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download PDF

DOI: 10.18503/1995-2732-2022-20-3-111-121

Abstract

The article presents the experimental study on the effect of a phase composition on micro- and nanocrack formation in the near-surface layer of a single(-Ti and -Ti)- and two-phase (+) titanium alloys after wire-cut electrical discharge machining on Sodick VZ300L machine. A comparative analysis performed during the study on cracking in single-phase titanium alloys, insufficiently described in literature, with the well-studied crack formation in two-phase titanium alloys determines the relevance of this study. Scientific novelty of the study consists in the absence of a qualitative and quantitative impact of the phase composition on cracking in the near-surface layer of titanium alloys VT3-1, VT5 and VT6, established by optical, scanning and transmission electron microscopy. Practical relevance of the achieved results lies in establishing the preferred orientation, as well as the characteristic sizes of microcracks and mainline nanocracks in the near-surface layer of VT3-1, VT5 and VT6 titanium alloys after electrical discharge machining in 1, 2, 3 and 4 passes, being 20, 12, 7 and 1 µm, respectively. The achieved results are the basis for recommendations for selecting a surface finishing method: the defective «white layer» is proposed to be removed by mechanical or electrochemical treatment. To completely remove the network of microcracks, it is recommended to take off an allowance exceeding the penetration depth of microcracks by twice or higher: for the first pass is 40 µm, for the second one is 25 µm, for the third one is 15 µm and for the fourth one is 2 µm.

Keywords

titanium alloys, phase composition, nanocracks, microcracks, near-surface layer, electrical discharge machining

For citation

Fedorov A.A., Polonyankin D.A., Bredgauer Iu.O., Zhdanova Iu.E., Linovsky A.V., Bobkov N.V. Effect of a Phase Composition on Nano- and Microcrack Formation in the Near-Surface Layer of Titanium Alloys after Electrical Dis-charge Machining. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2022, vol. 20, no. 3, pp. 111-121. https://doi.org/10.18503/1995-2732-2022-20-3-111-121

Fedorov A.A. Omsk State Technical University, Omsk, Russia

Polonyankin D.A. Omsk State Technical University, Omsk, Russia

Bredgauer Iu.O. Omsk State Technical University, Omsk, Russia

Zhdanova Iu.E. Omsk State Technical University, Omsk, Russia

Linovsky A.V. Omsk State Technical University, Omsk, Russia

Bobkov N.V. Omsk State Technical University, Omsk, Russia

1. Karkalos N.E., Galanis N I., Markopoulos A.P. Sur-face roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft com-puting techniques. Measurement, 90, 25-35 (2016). DOI: 10.1016/j. measurement.2016.04.039

2. Shlykov E.S., Ablyaz T.R., Muratov K.R. Ensuring the accuracy of wire-cutting EDM processing of products made of hard-to-handle materials. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2020, vol. 22, no. 3, pp. 6-17. (In Russ.) DOI: 10.17212/1994-6309-2020-22.3-6-17

3. The world’s leading titanium distributor. Supra Alloys. Available at: http://www.supraalloys.com (Accessed on February 07, 2020).

4. Hascalik A., Caydas U. Electrical discharge machin-ing of titanium alloy. Appl. Surf. Sci., 253, 9007-9016 (2007). https://doi.org/10.1016/j.apsusc.2007.05.031

5. Sarkar S., Mitra S., Bhattacharyya B. Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. Journal of Materials Processing Technology, 159, 3, 286-294 (2005). DOI: 10.1016/j. jmatprotec.2004.10.009

6. Kushwaha A., Jadam T., Datta S. et al. Assessment of surface integrity during electrical discharge machining of titanium grade 5 Alloys (Ti-6Al-4V). Materials Today: Proc., 18, 7, 2477-2485 (2019). DOI: 10.1016/ j.matpr.2019.07.097

7. Pramanik A., Basak A.K., Prakash C. Understanding the wire electrical discharge machining of Ti6Al4V alloy. Heliyon, 5, 4, e01473 (2019). DOI: 10.1016/ j.heliyon.2019.e01473

8. Fedorov A.A., Blesman A.I., Polonyankin D.A. et al. Influence of modes of wire-cut EDM on the morphol-ogy and roughness of the surface of titanium alloy VT3-1. Rossiya molodaya: peredovye tekhnologii – v promyshlennost [Russia is young: advanced technologies for industry], 2017, no. 1, pp. 62-66. (In Russ.)

9. Zhdanova Yu.E., Fedorov A.A., Blesman A.I. et al. Study on the surface of samples of titanium alloy VT3-1 manufactured using electroerosion machining. Rossiya molodaya: peredovye tekhnologii – v promyshlennost [Russia is young: advanced technologies for industry], 2019, no. 1, pp. 5-10. (In Russ.) DOI: 10.25206/2310-4597-2019-1-5-10

10. Fedorov A.A., Polonyankin D.A., Blesman A.I. et al. Study on the influence of wire-cut EDM modes on crack formation and morphology of the surface layer of titanium alloy VT3-1. Omskiy nauchnyi vestnik [Omsk Scientific Bulletin], 2020, no. 2 (170), pp. 23-30. (In Russ.) DOI: 10.25206/1813-8225-2020-170-23-30

11. Soo S.L., Antar M.T., Aspinwall D.K. et al. The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy. Procedia CIRP, 6, 215-219 (2013). DOI: 10.1016/ j.procir.2013.03.043

12. Tonday H.R., Tigga A.M. Characterization of surface integrity of Ti6Al4V alloy machined by using wire electrical discharge machining process. Materials To-day: Proc., 11, 2, A8-A14 (2019). DOI: 10.1016/ j.matpr.2019.03.049

13. Kumar R., Roy S., Gunjan P. et al. Analysis of MRR and surface roughness in machining Ti-6Al-4V ELI titanium alloy using EDM process. Procedia Manu-facturing, 20, 358-364 (2018). DOI: 10.1016/ j.promfg.2018.02.052

14. Patnaik P., Datta S., Mahapatra S.S. WEDM perfor-mance of Ti-6Al-4V: emphasis on multi-cut strategy, effects of electrode wire. Materials Today: Proc., 18, 7, 4102-4110 (2019). DOI: 10.1016/j.matpr.2019. 07.354

15. Jain S.P., Ravindra H.V., Ugrasen G. et al. Study of surface roughness and AE signals while machining titanium grade-2 material using ANN in WEDM. Materials Today: Proc., 4, 9, 9557-9560 (2017). DOI: 10.1016/ j.matpr.2017.06.223

16. Arikatla S.P., Mannan K.T., Krishnaiah A. Surface integrity characteristics in wire electrical discharge machining of titanium alloy during main cut and trim cuts. Materials Today: Proc., 4, 2, A, 1500-1509 (2017). DOI: 10.1016/j. matpr.2017.01.172

17. Mouralova K., Kovar J., Klakurkova L. et al. Analysis of surface and subsurface layers after WEDM for Ti-6Al-4V with heat treatment. Measurement, 116, 556-564 (2018). DOI: 10.1016/j.measurement. 2017.11. 053