DOI: 10.18503/1995-2732-2022-20-2-44-52
Abstract
Problem Statement (Relevance).The Ural region is a metallurgical center of Russia more than 300 years, and for such a long period a large amount of man-made waste (slag) has accumulated here. The study on the material composition of the slags is a relevant task, since before you dispose of them you need to understand what kind of a mineral composition we are dealing with. Many slags are potential ores that can be further processed; some of them are technology-related refractories, etc. Objectives.The research is aimed at studying the material (mineral) composition of slags from the Klyuchevskoy Ferroalloy Plant formed as a result of ferrotungsten production.Methods Applied. The chemical composition of rock-forming and ore minerals of the slag was determined with a CAMECA SX 100 electron probe microanalyzer with five wave spectrometers (the Institute of Geology and Geochemistry, the Ural Branch of the Russian Academy of Sciences, Yekaterinburg). To analyze it, we used polished petrographic thin sections cut from pieces of slag.Originality. The material composition of the slags was studied from the point of view of conventional mineralogy, using the modern mandatory nomenclature of the International Mineralogical Association.Result. For the first time, the mineralogy of ferrotungsten slags produced at the Klyuchevskoy Metallurgical Plant was studied. It has been established that they are composed of a fluormayenite-spinel aggregate with a significant content of fluorite and the presence of cuspidine, fluorkyuygenite, and metal (Fe-W alloy and Fe7W6 intermetallic compound). These slags are waste products of ferrotungsten production, and the temperature of their formation is apparently estimated within narrow limits of 1360–1460°C. Practical Relevance.The slags under study can be used for additional processing, because rock-forming spinel is a good abrasive material, and ferrotungsten as a by-product (it is easily produced by magnetic separation) can be further used as alloying additions to steels.
Keywords
fluormayenite, spinel, fluorite, cuspidine, mineralogy, slags, Klyuchevskoy Ferroalloy Plant.
For citation
fluormayenite, spinel, fluorite, cuspidine, mineralogy, slags, Klyuchevskoy Ferroalloy Plant.
1. Ed. by Kuzmin N.V. Klyuchevskoy zavod ferrosplavov: k 75-letiyu Klyuchevskogo zavoda ferrosplavov. Entsiklopediya [The Klyuchevskoy Ferroalloy Plant: to the 75th Anniversary of the Klyuchevskoy Ferroalloy Plant. Encyclopedia]. 2nd edition, revised. Yekaterinburg: Ural Worker Publishing House, 2016, 519 p. (In Russ.)
2. Zavyalov O.A. Zharostoykie betony na osnove alyuminotermicheskikh shlakov ferrosplavnogo proizvodstva: avtoref. diss. kand. tekhn. nauk [Heat-resistant concrete based on aluminothermic slags of ferroalloy production. Extended abstract of the Ph.D. thesis]. Dnepropetrovsk, 1981. 24 p.
3. Lapin V.V., Kurtseva N.N., Ostrogorskaya O.P. On spinel, corundum (ruby) and a kind of "β-alumina" in aluminothermic slags]. Trudy IGEM AN SSSR [Proceedings of the Institute of Geology and Earth Mechanics of the Academy of Sciences of the USSR], 1958, issue 30, pp. 124–133. (In Russ.)
4. Podnogin A.K., Suchilnikov S.I., Shklyar R.S. On the mineral composition of slag from the aluminothermic smelting of ferrotitanium. Trudy 2-go Uralskogo petrograficheskogo soveshchaniya «Petrografiya ogneuporov, shlakov i sinteticheskikh mineralov» [Proceedings of the 2nd Ural petrographic meeting "Petrography of refractories, slags and synthetic minerals"]. Sverdlovsk: Institute of Geology and Geochemistry of the Ural Branch of the Academy of Sciences of the USSR], 1968, vol. 7, pp. 112‒115. (In Russ.)
5. Perepelitsyn V.A., Rytvin V.M., Kormina I.V., Ignatenko V.G. Material composition and properties of the main types of slags of OJSC Klyuchevskoy Ferroalloy Plant]. Novyye ogneupory [New Refractories], 2006, no. 9, pp. 15–20. (In Russ.)
6. Erokhin Yu.V.Mineralogy of aluminous slag from the Klyuchevskoy Ferroalloy Plant]. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis], 2012, no. 13, pp. 65–75. (In Russ.)
7. Erokhin Yu.V., Berzin S.V. Sapphire-hibonite slag from the Klyuchevskoy Ferroalloy Plant]. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis], 2014, no. 15, pp. 70–81. (In Russ.)
8. Erokhin Yu.V., Ponomarev V.S., Mikheeva A.V. Spinel slag from the Klyuchevskoy Ferroalloy Plant. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis], 2018, no. 19, pp. 70–80. (In Russ.)
9. Perepelitsyn V.A., Rytvin V.M., Koroteev V.A., Makarov A.B., Grigoriev V.G., Gilvarg S.I., Abyzov V.A., Abyzov A.N., Tabulovich F.A. Tekhnogennoe mineralnoe syrie Urala: monografiya [Technology-related mineral raw materials of the Urals: monograph]. Yekaterinburg: Editorial and Publishing Unit of the Ural Branch of RAS, 2013, 332 p. (In Russ.)
10. Galuskin E.V., Gfeller F., Armbruster T., Galuskina I.O., Vapnik Y., Dulski M., Murashko M., Dzierżanowski P., Sharygin V.V., Krivovichev S.V., Wirth R. Mayenite supergroup, part III: Fluormayenite, Ca12Ala14aO32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rocks of the Hatrurim Complex, South Levant. Eur. Jour. Miner. 27, 123–136 (2015). DOI: 10.1127/ejm/2015/0027-2420
11. Hentschel G. Mayenit, 12CaO 7Al2O3, und Brownmillerit, 2CaO (Al,Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberges. Neues Jahrb. Miner. Monats. 22–29 (1964).
12. Galuskin E.V., Kusz J., Armbruster T., Bailau R., Galuskina I.O., Ternes B., Murashko M. A reinvestigation of mayenite from the type locality, the Ettringer Bellerberg volcano near Mayen, Eifel district, Germany. Mineralogical Magazine, 76, 707–716 (2012). DOI: 10.1180/minmag.2012.076.3.18
13. Williams P.P. Refinement of the structure of 11CaO7Al2O3CaF2. Acta Crystallographica, B29, 1550–1551 (1973).
14. Lebedev A.M., Sumin N.G. On red spinel from Slyudyanka. Trudy Mineralogicheskogo Muzeya AN SSSR [Proceedings of the Mineralogical Museum of the USSR Academy of Sciences], 1952, vol. 4, pp. 149–151. (In Russ.)
15. Bjärnborg K., Schmitz B.Large spinel grains in a CM chondrite (Acfer 331): Implications for reconstructions of ancient meteorite fluxes. Meteor. Planet. Sci. 48, 2, 180–194 (2013).
16. Pashkeev I.Yu., Pashkeev K.Yu., Kalinin K.S., Karpenko E.N. Slag formation in the process of secondary aluminothermic smelting of ferrotungsten. Vestnik YuUrGU. Seriya «Metallurgiya»[Bulletin of SUSU. Series: Metallurgy], 2013, vol. 13, no. 1, pp. 29–33. (In Russ.)
17. Abramovich Yu.M., Nechaev Yu.A. Authigenic fluorite in the Kungurian deposits of the Permian Cisurals. Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1960, vol. 135, no. 2, pp. 414–415. (In Russ.)
18. Kalyuzhny V.A., Lyakhov Yu.V. Inclusions of cassiterite and fluorite in crystals from Volyn pegmatites. Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1962, vol. 143, no. 5, pp. 1182–1185. (In Russ.)
19. Henry D.A. Cuspidine-bearing skarn from Chesney Vale, Victoria. Austr. Jour. Earth Sci. 46, 2, 251–260 (1999).
20. Gross S. The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. Israel. 1977. Bull. No. 70. 80 p.
21. Kruszewski Ł. Oldhamite-periclase-portlandite-fluorite assemblage and coexisting minerals of burnt dump in Siemianowice Śląskie-Dąbrówka Wielka area (Upper Silesia, Poland) - preliminary report. Miner. Polon. Spec. Papers. 28, 118–120 (2006).
22. Wilson A., Leary J.K. The occurrence of cuspidine in phosphorus furnace slag. Amer. Miner. 46, 759–761 (1961).
23. Song W., Xu L., Shan K., Zhou Yu., Xiao F., Shen H., Wei S. Development of a new high-density iron-tungsten alloy (FWA) reinforced by Fe7W6 and Fe2W particles with high tensile strength and specific strength. Jour. All. Comp. 854, 157323 (2021). DOI:10.1016/j.jallcom.2020.157323
24. Plener Yu.L., Suchilnikov S.I., Rubinshtein E.A.Alyuminotermicheskoe proizvodstvo ferrosplavov i ligatur [Aluminothermic production of ferroalloys and addition alloys].Moscow: Metallurgy, 1963, 175 p. (In Russ.)
25. Rankin G.A., Wright F.E. Ternary system CaO–Al2O3–SiO2. Amer. Jour. Sci. 39, 1, 11–12 (1915).
26. Mao H., Hillert M., Selleby M., Sundman B. Thermodynamic assessment of the CaO–Al2O3–SiO2system. Jour. Amer. Ceram. Soc. 89, 1, 298–308 (2006). DOI: 10.1111/j.1551-2916.2005.00698.x