ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

скачать

Аннотация

Постановка задачи (актуальность работы): в статье рассмотрены технологические особенности изготовления длинномерных прутков и проволоки из кусковых фракций меди на основе применения методов термодеформационной обработки некомпактных материалов. Использование предлагаемой схемы позволит повысить выход годного при переработке данного вида отходов за счет исключения угара металла, свойственного плавильному переделу. Цель работы: практическое опробование энерго- и ресурсосберегающего способа переработки кусочных отходов медной проволоки в полуфабрикаты и изделия с заданным уровнем механических характеристик. Используемые методы: основу предлагаемой схемы составляли выполняемые при определенных условиях такие технологические операции, как горячее брикетирование, горячая экструзия, холодное волочение и отжиг. Для оценки прочностных и пластических свойств получаемой прутково-проволочной продукции применяли стандартные испытания на растяжение. Новизна: к элементам новизны относится реализация нестандартного подхода к переработке сортных металлических отходов, основанного на использовании приемов, широко распространенных в порошковых и гранульных технологиях, но малоприменяемых при рециклинге вторичного сырья. Результат: показана принципиальная возможность получения длинномерной медной проволоки из представляющих отходы производства отдельных кусочных фрагментов, используя только методы термодеформационной обработки. На всех стадиях ее изготовления поведение материала носит характер, во многом схожий с поведением соответствующих полуфабрикатов из компактной меди. Установлено, что, комбинируя величиной суммарного относительного обжатия при волочении и местом расположения в маршруте волочения промежуточного рекристаллизационного отжига, можно варьировать уровнем и соотношением достигаемых у получаемой проволоки прочностных и пластических характеристик. Практическая значимость: приобретенный опыт и результаты проведенных исследований могут служить потенциальной основой для распространения и проектирования подобного рода технологий переработки металлических мелкогабаритных отходов применительно к другим их видам, в том числе и для ряда других цветных металлов и сплавов.

Ключевые слова

Медь, проволочные отходы производства, брикетирование, экструзия, волочение, отжиг, механические свойства, структура.

Загиров Н.Н., Иванов Е.В. Сибирский федеральный университет, Красноярск, Россия

Логинов Ю.Н., Уральский федеральный университет, Екатеринбург, Россия

1. Ab Rahim S.N., Lajis M.A., Ariffin S. A review on recycling aluminum chips by hot extrusion process. Procedia CIRP. 2015. V. 26. P. 761–766.

2. Ryoichi Chiba, Morihiro Yoshimura. Solid-state recycling of aluminium alloy swarf into c-channel by hot extrusion. Journal of Manufacturing Processes. 2015. V. 17. P. 1–8.

3. Haase Matthias, Tekkaya A. Erman. Recycling of aluminum chips by hot extrusion with subsequent cold extrusion. Procedia Engineering. 2014. V. 81. P. 652–657.

4. Anilchandra A.R., Surappa M.K. Microstructure and tensile properties of consolidated magnesium chips. Materials Science and Engineering: A. 2003. V. 560. P. 759–766.

5. Uwe Hofmann, Essam El-Magd. Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes. Materials Science and Engineering A. V. 2005. V. 395. P. 129–140.

6. Малиновская И.Д., Демин А.Б. Исследование технологического процесса утилизации титановых отходов компактированием. Современные ресурсосберегающие технологии получения и обработки материалов в машиностроении. Киев, 1991. С.12–14.

7. Загиров Н.Н., Логинов Ю.Н. Технологические основы получения материалов и изделий из сыпучих стружковых отходов меди и ее сплавов методами обработки давлением: монография. Красноярск : Сиб. фед. ун-т, 2015. 171 с.

8. Loginov Y.N., Illarionov A.G., Klyueva S.Y., Ivanova M.A. Deformations and structure of metal during cold butt-seam welding of copper blanks. Russian Journal of Non-Ferrous Metals. 2012. V. 53. Iss. 1. P. 45–53.

9. Логинов Ю.Н., Осминин А.С., Копылова Т.П. Исследование изменения относительного сужения кислородсодержащей медной проволоки по маршруту волочения // Заготовительные производства в машиностроении. 2012. № 5. С. 29–32.

10. Медные сплавы. Марки, свойства, применение: справочник / Райков Ю. Н., Ашихмин Г. В., Полухин В. П., Гуляев А. С. М.: ОАО «Институт «Цветметобработка», 2011. 456 с.

11. Шевакин Ю. Ф., Грабарник Л. М., Нагайцев А. А. Прессование тяжелых цветных металлов и сплавов. М.: Металлургия, 1987. 246 с.

12. Брабец В. И. Проволока из тяжелых цветных металлов и сплавов. М.: Металлургия, 1984. 296 с.

13. Hoon Cho, Hyung-Ho Jo, Sang-Gon Lee, Byung-Min Kim, Young-Jig Kim Effect of reduction ratio, inclusion size and distance between inclusions on wire breaks in Cu fine wiredrawing. Journal of Materials Processing Technology. 2002. V. 130–131. P. 416–420.

14. Loginov Y.N., Demakov S.L., Illarionov A.G., Ivanova M.A. Interaction of a copper oxide particle with copper in drawing. Russian Metallurgy (Metally). 2012. V. 11. P. 947–953.

15. Garcia V.G., Cabrera J.M., Prado J.M. Role of Cu2O during hot compression of 99.9% pure copper. Materials Science and Engineering A. 2008. V. 488. P. 92–101.