ISSN (print) 1995-2732
ISSN (online) 2412-9003

download PDF

DOI: 10.18503/1995-2732-2025-23-1-190-200

Abstract

Matters of regional price variations, equalization of price growth rates and achieving spatial equilibrium are rising periodically within the single economic space of the country. The relevance of their solution increases in the context of external shocks that determine changes in exchange rates, destruction of supply channels, changes in the structure of added value, etc. With the development of information technology, researchers are increasingly paying attention to new sources of data to predict regional price changes. Fiscal data are becoming one of the information sources generating streams of geographically structured data and, therefore, they are well suited for this purpose. The emergence of such data makes it possible to build more complex forecast models while the increase in the number of observations contributes to the improvement in their statistical significance. The purpose of the work is to determine the sensitivity of spatial autocorrelation prices’ estimates to the choice of a weighting matrix and the level of data aggregation. The study was conducted on data from the online analytics service for retail sales in the Russian Federation (https://prodazhi.rf), which forms a database based on receipts registered by the fiscal data operator “1-OFD”. The dataset contains daily recorded price data for cough and cold medicines (3 brands) and embraces the period from January 1, 2021 to December 31, 2023. It is established that the level of data aggregation (in the form of daily, weekly or monthly values) influences the ability to interpret the results obtained whereas the choice of a particular weight matrix affects the strength of the spatial dependence. The identified dependencies are of interest to a wide range of people involved in issues of spatial measurements as well as problems of regional pricing.

Keywords

sales price, spatial autocorrelation, regional differentiation, level of aggregation, weight matrix

For citation

Timiryanova V.M., Krasnoselskaya D.Kh., Prudnikov V.B., Girfutdinova A.F. Spatial Prices’ Autocorrelation: Sensitivity to the Weighting Matrix Choice and Level of Data Aggregation. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 190-200. https://doi.org/10.18503/1995-2732-2025-23-1-190-200

Venera M. Timiryanova – DrSc (Eng.), Chief Researcher, Ufa University of Science and Technology, Ufa, Russia. Email: 79174073127@mail.ru. ORCID 0000-0002-1004-0722

Dina Kh. Krasnoselskaya – PhD (Eng.), Senior Researcher, Ufa University of Science and Technology, Ufa, Russia. Email: dina-hamzina@mail.ru. ORCID 0000-0002-1668-2937

Vadim B. Prudnikov – PhD (Eng.), Associate Professor, Senior Researcher, Ufa University of Science and Technology, Ufa, Russia. Email: prudnikov.bgu@mail.ru. ORCID 0000-0001-9892-3257

Alsu F. Girfutdinova – student, Ufa University of Science and Technology, Ufa, Russia. Email: aaagir13@mail.ru

1. Tobler W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography. 1970;(46):234-240. https://doi.org/10.2307/143141.

2. Abzalilova L.R., Akhmadeev A.M., Bakhitova R. Kh. et al. ESG-transformatsiya innovacionnogo razvitiya ekonomiki: regionalnye i otraslevye aspekty [ESG transformation of innovative economic development: regional and industry aspects]. Moscow: KnoRus publishing house, 2023, 290 p. (In Russ.)

3. Valinurova L.S., Oreshnikov V.V. An approach to modeling a region’s innovation activity. Vestnik Permskogo universiteta. Seriya: Ekonomika [Perm University Herald. Economy], 2023;18(3):275-291. https://doi.org/10.17072/1994-9960-2023-3-275-291. (In Russ.)

4. Rossinskaya G.M., Ibragimova Z.F., Ishmuhametov N.S. Food security: formation and manifestation at different levels of the economic system. Ekonomika i upravlenie: nauchno-prakticheskiy zhurnal [Economics and management: scientific and practical journal], 2022;(3(165)):11-17. (In Russ.)

5. Yusupov K.N., Grishin K.E., Bikmaeva A.D. Strategicheskie orientiry regionalnogo razvitiya v sovremen-nyh usloviyah: monografiya [Strategic guidelines for regional development in modern conditions: monograph]. Ufa: UUNiT, 2022, 214 p. (In Russ.)

6. Mantaeva E.I., Goldenova V.S., Slobodchikova I.V. Some aspects of sustainable development of the regional economy. Nauchnye trudy Volnogo ekonomicheskogo obshchestva Rossii [Scientific works of the Free Economic Society of Russia], 2022;236(4):78-97. https://doi.org/10.38197/2072-2060-2022-236-4-78-97. (In Russ.)

7. Krivoshlykov V.S., Zhahov N.V., Borodin A.L. et al. Factor analysis of the system development of the food market of fish products. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020: 33, Education Excellence and Innovation Management through Vision 2020, Granada, 2019:6217-6223.

8. Chakrabarty M., Majumder A., Ray R. A Framework for the Simultaneous Measurement of Spatial Variation and Temporal Movement in Prices in a Heterogeneous Country: The Dynamic Household Regional Product Dummy Model. Review of Income and Wealth. 2018;(64):703-730. https://doi.org/10.1111/roiw.12266.

9. Ray R. Spatial Differences in Prices in India, State Rankings and Inequality. Household Behaviour, Prices, and Welfare. Themes in Economics. Springer, Singapore. 2019:119–178. https://doi.org/10.1007/978-981-13-1930-3_6.

10. Weinand S., von Auer L. Anatomy of regional price differentials: evidence from micro-price data. Spatial Economic Analysis. 2020;(15(4)):413–440. https://doi.org/10.1080/17421772.2020.1729.

11. Wu G., Zhang C., Liu P., Ren W., Zheng Y., Guo F., et al. Spatial quantitative analysis of garlic price data based on arcgis technology. Comput Mater Contin. 2019;(58(1)):183-195. https://doi.org/10.32604/cmc.2019.03792.

12. Tsyplakov A.A. Statistical analysis of the dynamics of regional price levels. Mir ekonomiki i upravleniya [World of Economics and Management], 2000;1:5-19. (In Russ.)

13. Ivanova V.I. Convergence of prices on the grain market: historical aspect. Prostranstvennaya ekonomika [Spatial Economics], 2015(3):34-56. (In Russ.)

14. Kirillov A.M. Spatial analysis of food Inflation in Russian regions. Prostranstvennaya Ekonomika [Spatial Economics], 2017;(4):41-58. https://doi.org/10.14530/se.2017.4.041-058. (In Russ.)

15. Kirillov A.M. Study of spatial autocorrelation: the case of Russian regional inflation. Prikladnaya ekonometrika [Applied Econometrics], 2021;(64):5-22. https://doi.org/10.22394/1993-7601-2021-64-5-22. (In Russ.)

16. Timiryanova V.M., Lakman I.A., Krasnoselskaya D.K., Stol A.V. Dynamics of spatial dependences of prices for vegetables and fruits. Prostranstvennaya Ekonomika [Spatial Economics], 2023;19(2):94-125. https://dx.doi.org/10.14530/se.2023.2.094-125. (In Russ.)

17. Payne M.T., Smith M.G., Landry C.J. Price Determination and Efficiency in the Market for South Platte Basin Ditch Company Shares. JAWRA Journal of the American Water Resources Association. 2014;(50(6)):1488-1500. https://doi.org/10.1111/jawr.12215.

18. Walker R., McKenzie P., Liddell Ch., Morris Ch. Spatial analysis of residential fuel prices: Local variations in the price of heating oil in Northern Ireland. Applied Geography. 2015;(63):369-379. https://doi.org/10.1016/j.apgeog.2015.07.016.

19. Bergeaud A., Raimbault J.. An empirical analysis of the spatial variability of fuel prices in the United State. Transportation Research Part A: Policy and Practice. 2020;(132(C)):131-143.

20. Fingleton B., Fuerst F., Szumilo N. Housing affordability: Is new local supply the key? Environment and Planning A: Economy and Space. 2019;(51(1)):25-50. https://doi.org/10.1177/0308518X18798372.

21. Fackler P.L., Goodwin B.K. Chapter 17 Spatial price analysis. Marketing, Distribution and Consumers. 2001:971 1024. https://doi.org/10.1016/s1574-0072(01)1002.

22. Аnselin L. Under the hood: issues in the specification and interpretation of spatial regression models. Agricultural economics. 2002;(27(3)):247-267.

23. Patrakeeva O.Yu., Kulygin V.V. Weight matrices in models for assessing the spatial effects of transport infrastructure in Russian regions. Razvitie vodnyh transportnyh magistraley v usloviyah globalnogo izmeneniya klimata na territorii Rossiyskoy Federatsii (Evrazii) («Opasnye yavleniya – IV») pamyati chlenakorrespondenta RAN D.G. Matishova: materialy IV Mezhdunarodnoy nauchnoy konferentsii (g. Rostov-na-Donu, 5–9 sentyabrya 2022 g.). [Development of water transport routes in the context of global climate change on the territory of the Russian Federation (Eurasia) (“Hazardous phenomena - IV”) in memory of Corresponding Member of the Russian Academy of Sciences D.G. Matishova. Proceedings of the IV International Scientific Conference (Rostov-on-Don, September 5-9, 2022)]. Rostov-on-Don: Publishing House of the Southern Scientific Center of the Russian Academy of Sciences, 2022, pp. 412-415. (In Russ.)

24. Bell K.P., Bockstael N.E. Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Micro-Level Data. Review of Economics and Statistics. 2000;(82(1)):72 82. https://doi.org/10.1162/003465300558641.

25. Demidova O.A. Spatial autoregressive model for two groups of interconnected regions (using the example of the eastern and western parts of Russia). Prikladnaya ekonometrika [Applied econometrics], 2014;(2(34)):19-35. (In Russ.)

26. Balash V.A., Fayzliev A.R. Spatial correlation in statistical research. Promyshlennost: ekonomika, upravlenie, tekhnologii [Industry: economics, management, technology], 2008(4):122-125. (In Russ.)

27. Kostov P. Model boosting for spatial weighting matrix selection in spatial lag models. Environment and Planning B: Planning and Design. 2010;(37(3)):533-549. https://doi.org/10.1068/b35137.

28. Karachurina L.B., Mkrtchyan N.V. Experience in calculating distances between different types of settlements in Russia (to estimate the distance of population migration). Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle [Bulletin of St. Petersburg University. Geosciences], 2023;(68 (3)):418-442. https://doi.org/10.21638/spbu07.2023.301. (In Russ.)

29. Abramov A., Glushchenko K. Matritsa kratchaishih rasstoyaniy mezhdu administrativnymi tsentrami rossiyskih regionov [Matrix of shortest distances between administrative centers of Russian regions]. Novosibirsk: NSU, 2000. Available at: http://nsu-ef.ru/teachers/Gluschenko_KP/Research/Data/Distances.xls (Accessed June 20, 2024). (In Russ.)

30. Zhao J.H., Dong Zh.Y., Li X., Wong K.P. A framework for electricity price spike analysis with advanced data mining methods. IEEE Transactions on Power Systems. 2007;(22(1)):376-385, Available at: https://www.klerk.ru/blogs/platformaofd/602111.

31. Rating of fiscal data operators – 2024. Available at: https://www.klerk.ru/blogs/platformaofd/602111/ (Accessed June 20, 2024). (In Russ.)

32. Kolomak E.A. Spatial externalities as a resource of economic growth. Region: ekonomika i sociologiya [Region: economics and sociology], 2010;(4):73-87. (In Russ.)

33. Frizado J., Smith B.W., Carroll M.C. et al. Impact of polygon geometry on the identification of economic clusters. Letters in Spatial and Resource Sciences. 2009;(2(1)):31-44. https://doi.org:10.1007/s12076-008-0020-6.

34. Ivanova V.I. Regional convergence of income: spatial analysis. Prostranstvennaya Ekonomika [Spatial Economics], 2014;(4):100-119. https://doi.org/10.14530/se.2014.4.100-119. (In Russ).