ISSN (print) 1995-2732
ISSN (online) 2412-9003

download PDF

DOI: 10.18503/1995-2732-2025-23-1-170-177

Abstract

Problem Statement (Relevance). One of the strategies for achieving high mechanical performance in materials design is the development of self-locking structures. Self-locking structures are assemblies of interlocking building blocks that are held together solely by contact and friction at the block boundaries and thus do not require any connecting elements. This feature makes them energy-absorbing, crack-resistant, versatile and recyclable. Of particular practical interest is the development of multilayer self- locking structures. A prefabricated multilayer structure made of truncated cubes is proposed, intended for use as equipment parts and construction elements. Objectives. The purpose of this work is to study the mechanical behavior of a multilayer self-locking structure made of truncated cubes, its structural stability and energy absorption characteristics. Methods Applied. Using the developed 3D finite element model, the mechanical characteristics of a self-locking structure made of H18N9T steel were studied. Originality. The study proposes a new self-locking structure made of truncated cubes. Result. A parametric study of the influence of the friction coefficient on the assembly response under quasi-static loading of a three-layer self-locking structure of truncated cubes was carried out. Diagrams of quasi-static loading of the assembly were designed for various values of the friction coefficient. The structure of the assembly and the distribution of Mises stresses at various stages of deformation were studied. The dependences of the peak load and absorbed energy on the friction coefficient were obtained. Practical Relevance. The results of the study make it possible to design energy-absorbing materials for various building structures, including bank protection structures, as well as increasing the vibration resistance of load-bearing columns.

Keywords

self-locking structures, topologically interlocked materials, deformation, modeling, finite element method, rigidity, steel

For citation

Pivovarova K.G., Pesina S.A., Belov A.Ya., Pivovarov F.V., Mogilnykh A.E. Simulation of Quasi-Static Loading of a Multilayer Self- Interlocking Structure Based on Truncated Cubes. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 170-177. https://doi.org/10.18503/1995-2732-2025-23-1-170-177

Kseniya G. Pivovarova – DrSc (Eng.), Professor, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. Email: k.pivovarova@magtu.ru. ORCID 0000-0002-9961-4074

Svetlana A. Pesina – DrSc (Eng.), Professor, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: pesina@magtu.ru.

Alexey Ya. Belov – DrSc (Eng.), Chief Researcher, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: kanelster@gmail.com . ORCHID 0000-0002-1371-7479

Fedor V. Pivovarov – PhD (Eng.), Senior Researcher, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. Email: piwo.f@yandex.ru.

Anna E. Mogilnykh – PhD (Eng.), Senior Researcher, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: kozhemiakina.a@yandex.ru.

1. Estrin Y., Krishnamurthy V.R., Akleman E. Design of architectured materials based on topological and geometrical interlocking. Journal of Materials Research and Technology. 2021;15:1165-1178.

2. Konstantinov D.V., Matveev S.V., Pesin A.M., Korchunov A.G., Pivovarova K.G. Application of Interlocking Structures: FEM-Based Concept Demonstration. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2023;21(1):93-99. (In Russ.) DOI:10.18503/1995-2732-2023-21-1-93-99

3. Pivovarova K.G., Matveev S.V., Pesina S.A., Kozhemyakina A.E., Pustovoitova O.V., Fedoseev S.A. Simulation of the bending process of a steel-aluminum composite with a wave-shaped interface. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2023;21(4):138-145. (In Russ.)

4. Feldfogel S., Karapiperis K., Andrade J., Kammer D.S. Scaling, saturation, and upper bounds in the failure of topologically interlocked structures. International Journal of Solids and Structures. 2023;269:112228.

5. Khandelwal S., Siegmund T., Cipra R.J., Bolton J.S. Transverse loading of cellular topologically interlocked materials. International Journal of Solids and Structures. 2012;49(18):2394-2403.

6. Young B., Bolmin O., Boyce B., Noell P. Synergistic strengthening in interlocking metasurfaces. Materials & Design. 2023;227:111798.

7. Piirainen V.Yu., Estrin Yu.Z. Topological self-locking as an engineering design principle in the construction of offshore and coastal structures. Zapiski Gornogo institute [Notes of the Mining Institute], 2017;226:480-486. (In Russ.)

8. Rimshin V.I., Krishan A.L., Astafieva M.A. Self-locking elements in pipe-concrete columns. Academia. Arkhitektura i stroitelstvo [Academia. Architecture and construction], 2023;3:140-148. (In Russ.)

9. Estrin Y., Dyskin A. V., Pasternak E. Topological interlocking as a material design concept. Materials Science and Engineering. 2011;31(6):1189-1194.

10. Mirkhalaf M., Sunesara A., Ashrafib B., Barthelat F. Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications. International Journal of Solids and Structures. 2019;158:52-65.

11. Fatehi E., Sarvestani H. Y., Ashrafi B., Akbarzadeh A. H. Accelerated design of architectured ceramics with tunable thermal resistance via a hybrid machine learning and finite element approach. Materials & Design. 2021;210:110056.

12. Kim D.Y., Siegmund T. Mechanics and design of topologically interlocked irregular quadrilateral tessellations. Materials & Design. 2021;212:110155.

13. Pesin A.M., Pustovoitov D.O., Lokotunina N.M., Pivovarova K.G., Konstantinov D.V., Pykhtunova S.V., Korotkova Iu.V., Pesin I.A., Nosov L.V. Mnogoslozhnaya konstruktsiya dlya ispolzovaniya v kachestve detaley oborudovaniya i stroitelnyh elementov [Multilayer structure for use as equipment parts and building elements]. Patent RF, no. 2798518, 2023.

14. Belov A.Ya., Pivovarova K.G., Lokotunina N.M., Pevnitskii D.L., Nilov F.K., Polozkov S.S., Shamsutdinov A.A., Zavadskii D.A., Sorokina D.I., Saigak A.V., Vorobev D.D. Sbornaya mnogoslozhnaya konstruktsiya dlya ispolzovaniya v kachestve detaley oborudovaniya i elementov stroitelstva [Prefabricated multilayer structure for use as equipment parts and construction elements]. Patent RF, no. 2813412, 2024.

15. Tretyakov A.V., Zyuzin V.I. Mekhanicheskie svoistva metallov i splavov pri obrabotke davleniem [Mechanical properties of metals and alloys during pressure treatment]. Moscow: Metallurgy, 1973, 224 p. (In Russ.)