DOI: 10.18503/1995-2732-2025-23-1-149-157
Abstract
Problem Statement (Relevance). To ensure the required surface properties of products, various coating methods are widely used. The coating and the product to which it is deposited are a system which properties depend on many factors, including material of the coating and the product, the method and modes of deposition, and the simultaneous presence of controlling, uncontrolled and disturbing parameters of the coating process. From this point of view, an urgent task is to develop a mathematical apparatus that makes it possible to determine the probability of obtaining the functional properties of coatings, taking into account the external operating conditions of the product. Objectives. The aim is to develop a theoretical approach that makes it possible to predict the probability of obtaining the functional properties of coatings, taking into account the presence of various influencing factors. Methods Applied. System analysis, functional analysis, theory of probability, Markov chains, matrix analysis, and the Monte Carlo method were used in the study. Originality. Using theory of probability, a mathematical apparatus has been developed that makes it possible to calculate the probability of obtaining the functional properties of coatings from powdered materials deposited by gas thermal spraying. Result. Using a sequential transformation of matrices, a stationary probability distribution of finding the “coated product” system in various states was obtained, which does not depend on the initial state of the system. Using the Monte Carlo method, the limiting stationary mode of the process was determined. A high convergence of the results of calculating the probability of obtaining the functional properties of coatings has been established. This indicates the correctness of the developed mathematical apparatus. Practical Relevance. The obtained results of theoretical studies can be adapted to determine the probability of obtaining the properties of coatings of various compositions, which are obtained by different methods of deposition.
Keywords
powdered coating, functional property, gas-thermal method, forecasting probability, Markov chain, matrix calculus, Monte Carlo method
For citation
Polyakova M.A., Izvekov Yu.A., Samodurova M.N., Trofimova S.N., Shemetova V.V., Yarushina D.V. Predicting the Probability of Obtaining the Functional Properties of Powder Coatings. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 149-157. https://doi.org/10.18503/1995-2732-2025-23-1-149-157
1. Gun G.S., Chukin M.V. Optimizaciya processov tekhnologicheskogo i ekspluatacionnogo deformirovaniya izdelij s pokrytiyami [Optimization of processes of technological and operational deformation of coated products]. Magnitogorsk: Publishing House of Nosov Magnitogorsk State Technical University, 2006, 323 p. (In Russ.)
2. Izvekov Yu.A. Scientific foundations of the methodology to assess and improve the quality of technical systems at metallurgical enterprise. Sbornik trudov V Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Zhivuchest i konstruktsionnoe materialovedenie (ZhIVKOM-2020)» v distancionnom formate [Proceedings of the V International Scientific and Technical Conference “Vitality and Structural Materials Science (ZHIVKOM-2020)” in a remote format]. Moscow: IMASH RAN, 2020, pp. 118-119. (In Russ.)
3. Izvekov Yu.A. Quantitative Evaluation Algorithm Technical System Reliability. Proceedings of the VI International Scientific Conference Fundamental Research and Innovative Technologies in Mechanical Engineering. Moscow: IMASH RAN. 2019:195-196.
4. Russman I.B. Modelirovanie i algoritmizaciya slaboformalizovannyh zadach vybora nailuchshih variantov sistemy [Modeling and algorithmization of weakly formalized problems of selecting the best system options]. Voronezh:VGU, 1991,168 p. (In Russ.)
5. Gambarov G.M. Statisticheskoe modelirovanie i prognozirovanie [Statistical modeling and forecasting]. Moscow: Finance and Statistics, 1990, 383 p. (In Russ.)
6. Brandt. Statisticheskie metody analiza nablyudeniy [Statistical methods for analysis of observations]. Moscow: Mir, 1975, 312 p. (In Russ.)
7. Aoki M. Optimizatsiya stohasticheskih system [Optimization of stochastic systems]. Moscow: Nauka, 1971, 424 p. (In Russ.)
8. Yermolyev Yu.M. Metody stohasticheskogo programmirovaniya [Methods of stochastic programming]. Moscow: Nauka, 1976, 256 p. (In Russ.)
9. Izvekov Yu.A., Polyakova M.A., Svetus K.O., Ilyin I.E. Fundamentals of the application of stochastic differential equations for assessing the quality of structures. Sovremennye problemy i perspektivy razvitiya nauki, tekhniki i obrazovaniya: Materialy IV Natsionalnoy nauchno-prakticheskoy konferentsii [Modern problems and prospects for the development of science, technology and education. Proceedings of the IV National Scientific and Practical Conference]. Magnitogorsk, 2023, pp. 172-174. (In Russ.)
10. Terano T., Asai K., Sugeno M. Prikladnye nechetkie sistemy [Applied fuzzy systems]. Moscow: Mir, 1993, 368 p. (In Russ.)
11. Melikhov A.N., Bernshtein L.S., Korovin S.Ya. Situatsionnye sovetuyushchie sistemy s nechetkoy logikoy [Situational advisory systems with fuzzy logic]. Moscow: Nauka, 1990, 272 p. (In Russ.)
12. Ostovari Moghaddam A., Abdollahzadeh A., Samodurova M., Shaburova N., Mikhailov D., Fereidonnejad R., Zhivulin V., Trofimov E. Novel high entropy intermetallic compounds: Synthesis and detonation spraying. Intermetallics. 2022;146(107591). DOI: 10.1016/j.intermet.2022.107591.
13. Samoilova O., Shaburova N., Samodurova M., Pashkeev K., Ostovari Moghaddam A., Trofimov E. Microstructure and Wear Behavior of Al0.25CoCrFeNiSi0.6 High-Entropy Alloy Coating Deposited on Stainless Steel by Detonation Spraying. Journal of Thermal Spray Technology. 2023. DOI: 10.1007/s11666-023-01562-w.
14. Ostovari Moghaddam A., Samodurova M., Mikhailov D., Trofimov E. High entropy intermetallic coatings fabricated by detonation spraying. Materials Letters. 2022;311(131560). DOI: 10.1016/j.matlet.2021.131560.
15. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A – Structural Materials Properties, Microstructure and Processing. 2004;375-377:213-218. DOI: 10.1016/j.msea.2003.10.257.
16. Yeh J.-W., Chen S.-K., Lin S.-J., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. 2004;6(5):299-303. DOI: 10.1002/adem.200300567/
17. Wang Q., Velasco L., Breitung B., Presser V. High-Entropy energy materials in the age of Big Data: a critical guide to next-generation synthesis and applications. Advanced Energy Materials. 2021;(2102355). 18 p. DOI: 10.1002/aenm.202102355/.
18. Patel P., Roy A., Sharifi N., Stoyanov P., Chromik R., Moreau C. Tribological Performance of High-Entropy Coatings (HECs): A Review. Materials. 2022;15(10):3699. DOI: 10.3390/ma15103699/.
19. Sharma A. High entropy alloy coatings and technology. Coatings. 2021;11(4):372. DOI: 10.3390/coatings11040372.
20. Polyakova M., Ostovari Moghaddam A., Trofimova S., Samodurova M., Trofimov E. A critical review on the high entropy material coatings: criteria for materials selection and coating procedure. Engineering Research Express. 2024;6(4). 22 p. DOI: 10.1088/2631-8695/ad8066
21. Smoluchowski M.V. Uber brownsche molekularbewegung unter einwirkung ¨außerer Kr¨afte und deren zusammenhang mit der verallgemeinerten diffusionsgleichung. Annalten der Physik. 1916;353(24):1103–1112.
22. Riss F., Sekelfalvi-Nad B. Lektsii po funktsionalnomu analizu [Lectures on functional analysis]. Moscow: Mir, 1979, 585 p. (In Russ.)
23. Moren K. Metody gilbertova prostranstva [Hilbert space methods]. Moscow: Mir, 1965, 570 p. (In Russ.)
24. Rid M., Saimon B. Metody sovremennoy matematicheskoy fiziki. Tom 1. Funktsionalniy analiz [Methods of modern mathematical physics. Volume 1. Functional Analysis]. Moscow: Mir, 1977, 357 p. (In Russ.)
25. Sveshnikov A.A. Prikladnye metody teorii sluchainyh funktsiy : uchebnoe posobie [Applied methods of the theory of random functions : a textbook]. Saint Petersburg: Publishing House “Lan”, 2011, 464 p. (In Russ.)
26. Sveshnikov A.A. Prikladnye metody teorii markovskih processov: uchebnoe posobie [Applied methods of the theory of Markov processes: a textbook]. Saint Petersburg: Publishing House “Lan”, 2007, 192 p. (In Russ.)
27. Sobol I.M. Metod Monte-Karlo [Monte-Carlo method]. Moscow: Nauka, 1968, 64 p. (In Russ.)