DOI: 10.18503/1995-2732-2025-23-1-92-102
Abstract
Problem Statement (Relevance). Elaboration of scientific and practical frameworks for enhancement the physical and mechanical properties and enlargement the functional characteristics of austenitic stainless steels (ASS) is a sought-after area for improving technologies of traditional and additive manufacturing. One of the most promising methods for the directed formation of required mechanical properties of metastable chromium-nickel ASS of type 18-10 which are not hardened by heat treatment is ultrasonic nanocrystal surface modification (UNSM) corresponding to the top-down nanotechnological manufacturing approach. Objectives. To date, the problem of a specified nanostructured state formation of ASS by optimizing the technological conditions of surface severe plastic deformation (SSPD) has not been completely resolved, what defines the relevance of studying the effect of static load on the structure and phase composition of 12Cr18Ni10Ti (the analogue of AISI 321 stainless steel) steel subjected to UNSM. Methods Applied. To achieve the goal of work X–ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were utilized ensuring the reliability and validity of examination the structural and phase composition of ASS after SSPD. Originality. The nature of variation in the volume fraction of deformation martensite during UNSM of AISI 321 steel has been established, which is approximated by a second–order polynomial function f (Vα/) = 0,0007∙x2 – 0,0204∙x + 0,7305 depending on a static load uniformly varying in the range from 10 to 30 N with a reliability of R2=0.94. Result. UNSM with a static load varying in the range from 10 to 30 N in 5 N increments ensures the formation of a two-phase (α/+γ) nanostructure in the near-surface layer of AISI 321 steel with a high (from ~60% to ~75%) volume fraction of the deformation martensite with a lamellar structure (band width from 50 up to 100 nm), as well as a significant dislocation density of ~1011 cm–2. Practical Relevance. The experimental data obtained can be useful for verifying the results of modeling and predicting the structural-phase states’ evolution of metastable ASS subjected to SSPD, and particularly to UNSM.
Keywords
ultrasonic nanocrystal surface modification, static load, AISI 321 metastable stainless steel, phase composition, austenite, deformation martensite, volume fraction of martensite, lamellae nanostructure
For citation
Polonyankin D.A., Fedorov A.A., Gomonyuk T.M. Effect of Static Load on the Structural Phase Composition of AISI 321 Stainless Steel Subjected to Ultrasonic Nanocrystal Surface Modification. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 92-102. https://doi.org/10.18503/1995-2732-2025-23-1-92-102
1. Titouche N.E., Boukharouba T., Amzert S.A. et al. Direct drive friction welding effect on mechanical and electrochemical characteristics of titanium stabilized austenitic stainless steel (AISI 321) research reactor thick tube. J. Manuf. Process. 2019;41:273-283. DOI: https://doi.org/10.1016/j.jmapro.2019.03.016.
2. Prakash K.S., Kannan A.R., Pramod R. et al. Microstructure, mechanical properties and fracture toughness of SS 321 stainless steel manufactured using wire arcadditive manufacturing. Trans. Indian Inst. Met. 2023;76:537-544. DOI: https://doi.org/10.1007/s12666-022-02713-3.
3. Gurovich B.A., Kuleshova E.A., Frolov A.S. et al. Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr–10Ni–Ti austenitic stainless steels. J. Nucl. Mater. 2015;465:565-581. DOI: https://doi.org/10.1016/j.jnucmat.2015.06.045.
4. Ganeev A.A., Ramazanov A.K. Optimization of a chemical composition of corrosion-resistant AISI 321 steel for pipeline valve castings. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2021;19(2):32-39. DOI: https://doi.org/10.18503/1995-2732-2021-19-2-32-39 (In Russ.)
5. Qiu Y., Yang H., Tong L., Wang L. Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals. 2021;11(7):1101-1114. DOI: https://doi.org/10.3390/met11071101.
6. Acharya S., Suwas S., Chatterjee K. Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale. 2021;13(4):2286-2301. DOI: http://dx.doi.org/10.1039/d0nr07566c.
7. Razyvaev E.I., Kapitanenko D.V. Effect of thermo-mechanical treatment on structure and properties of austenitic steels. Trudy VIAM [Proceedings of VIAM], 2013;5:1 (In Russ.)
8. Yang X., Wang D., Wang X., Ling X. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results in Physics. 2017;7:1412-1421. DOI: https://doi.org/10.1016/j.rinp.2017.04.002.
9. Ji W., Zhou R., Vivegananthan P. et al. Recent progress in gradient-structured metals and alloys. Prog. Mater Sci. 2023;140:101194. DOI: http://dx.doi.org/10.1016/j.pmatsci.2023.101194.
10. Kishore A., John M., Ralls A.M. et al. Ultrasonic nanocrystal surface modification: processes, characterization, properties, and applications. Nanomaterials. 2022;12(9):1415. DOI: http://dx.doi.org/10.3390/nano12091415.
11. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Mater. Sci. Eng., R. 2009;65(4-6):39-104. DOI: http://dx.doi.org/10.1016/j.mser.2009.03.001.
12. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. Fizika metallov i metallovedenie [Physics of Metals and Metallography], 2017;118(12):1300-1311. DOI: https://doi.org/10.7868/S0015323017120087 (In Russ.)
13. Shi X., Xiao Z., Wu J. The use of nanotechnology to improve the bulk and surface properties of steel for structural applications. Nanotechnology in eco-efficient construction. 2013;75-107. DOI: http://dx.doi.org/10.1533/9780857098832.1.75.
14. Amanov A., Pyun Y.S. Lowering friction of ball screws made of different steel grades through ultrasonic impact treatment. Tribol. Int. 2018;123:105-119. DOI: http://dx.doi.org/10.1016/j.triboint.2018.03.008.
15. Bachurin D.V., Murzaev R.T., Nazarov A.A. Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal. Ultrasonics. 2021;117:106555. DOI: http://dx.doi.org/10.1016/j.ultras.2021.106555.
16. Polonyankin D.A., Fedorov A.A., Blesman A.I., Nesov S.N. Structural coloration of AISI 321 steel surfaces textured by ultrasonic impact treatment. Optics & Laser Technology. 2022;150:107948. DOI: http://dx.doi.org/10.1016/j.optlastec.2022.107948.
17. Statnikov E.Sh., Korolkov O.V., Vityazev V.N. Physics and mechanism of ultrasonic impact. Ultrasonics. 2006;44:e533-e538. DOI: https://doi.org/10.1016/j.ultras.2006.05.119.
18. Yasuoka M., Wang P., Zhang K. et al. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification. Surf. Coat. Technol. 2013;218:93-98. DOI: https://doi.org/10.1016/j.surfcoat.2012.12.033.
19. Sun L., Huang L., Wu P. et al. Progress on the effect and mechanism of ultrasonic impact treatment on additive manufactured metal fabrications. Crystals. 2023;13(7):995. DOI: https://doi.org/10.3390/cryst13070995.
20. Diao M., Guo C., Sun Q. et al. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment. Mater. Sci. Eng., A. 2022;857:144044. DOI: https://doi.org/10.1016/j.msea.2022.144044.
21. Ye C., Telang A., Gill A. S., Suslov S. et al. Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility. Mater. Sci. Eng., A: A. 2014;613:274-288. DOI: http://dx.doi.org/10.1016/j.msea.2014.06.114.
22. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782-817. DOI: https://doi.org/10.1016/j.actamat.2012.10.038.
23. He Y., Zhou H., Liu W. et al. The role of α′-martensite on the variation of compressive residual stress in a gradient nanostructured austenitic stainless steel. Mater. Des. 2024;238:112723. DOI: https://doi.org/10.1016/j.matdes.2024.112723.
24. Amanov A., Pyun Y.-S. A comprehensive review of nanostructured materials by ultrasonic nanocrystal surface modification technique. J. Eng. 2015;2015(13):144-149. DOI: https://doi.org/10.1049/joe.2015.0067.
25. Janeiro I., Hubert O., Schmitt J.-H. In-situ strain induced martensitic transformation measurement and consequences for the modeling of medium Mn stainless steels mechanical behavior. Int. J. Plast. 2022;154:103248. DOI: http://dx.doi.org/10.1016/j.ijplas.2022.103248.
26. Ghasemi A, Vanini S.A.S. Experimental and numerical investigation of martensite phase transformation in austenitic stainless steel subjected to ultrasonic nanocrystal surface modification at room and cryogenic temperatures. Surf. Coat. Technol. 2023;474:130109. DOI: http://dx.doi.org/10.1016/j.surfcoat.2023.130109.
27. Ahmedabadi P.M, Kain V., Agrawal A. Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel. Mater. Des. 2016;109:466-475. DOI: http://dx.doi.org/10.1016/j.matdes.2016.07.106.
28. Tiamiyu A.A., Szpunar J.A., Odeshi A.G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect. Mater. Charact. 2019;154:7-19. DOI: http://dx.doi.org/10.1016/j.matchar.2019.05.027.
29. Vasylyev M.A., Mordyuk B.N., Sidorenko S.I. et al. Influence of microstructural features and deformation-induced martensite on hardening of stainless steel by cryogenic ultrasonic impact treatment. Surf. Coat. Technol. 2018;343:57-68. DOI: http://dx.doi.org/10.1016/j.surfcoat.2017.11.019.