ISSN (print) 1995-2732
ISSN (online) 2412-9003

download PDF

DOI: 10.18503/1995-2732-2025-23-1-85-91

Abstract

With the opening of new horizons in nuclear energy, especially in the context of the development of third-generation reactors and their improved versions, the requirements for safety and environmental sustainability of nuclear technologies have increased significantly. An important aspect of these requirements is the efficient functioning of materials for absorber elements, which play a key role in monitoring and regulating the nuclear reaction. Absorbers ensure the possibility of reliable reaction control, reducing risks and complying with environmental protection standards. Hafnates are one of the most promising grades of materials for use in new reactors. These compounds are characterized by high neutron absorption capacity and stable physicochemical properties at high temperatures. One of the main advantages of titanates is their ability to create effective structures that can quickly respond to changes in reactor operating conditions. This allows them to retain their characteristics even at high temperatures and radiation exposure. The advantages of using gadolinium as a burnable absorber, which can increase the initial fuel load and expand the reactor core, as well as the energy release field, are considered. The article presents the results of an experimental study of the corrosion resistance of gadolinium titanate obtained by a mechanochemical method. The tests are carried out in an autoclave at high temperatures and pressure, with measurements of changes in samples during heat treatment. The data obtained increase the efficiency of using additional material. The conclusion is made on the need to develop technologies for mass production of absorbing elements, as well as improving the quality control and reducing the costs of manufacture. It is noted that the development of new materials based on complex oxide ceramics of rare earth elements requires solving problems associated with the introduction into mass production, quality improvement and production costs reduction.

Keywords

hafnates, titanates, oxides, rare earth metals, mechanochemistry, synthesis, properties

For citation

Sharipzyanova G.Kh. Production and Application of Hafnates and Titanates of Rare Earth Metals. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 85-91. https://doi.org/10.18503/1995-2732-2025-23-1-85-91

Guzel Kh. Sharipzyanova – PhD (Eng.), Vice-Rector for Academic Affairs, Moscow Polytechnic University, Moscow, Russia. Email: guzel@mtw.ru. ORCID 0000-0002-0863-7490

1. Tretyakov Yu.D., Lepis H. Khimiya i tekhnologiya tverdofaznyh materialov: ucheb. posobie [Chemistry and technology of solid–phase materials: a textbook]. Moscow: Publishing House of Moscow State University, 1985, 253 p. (In Russ.)

2. Golik V. I., Klyuev R. V., Martyushev N. V., Zyukin D. A., Karlina A. I. Technology for nonwaste recovery of tailings of the mizur mining and processing plant. Metallurgist. 2023;66(11-12):1476-1480. DOI: 10.1007/s11015-023-01462-y.

3. Brigida V. S., Golik V. I., Klyuev R. V., Sabirova L. B., Mambetalieva A. R., Karlina Yu. I. Efficiency gains when using activated mill tailings in underground mining. Metallurgist. 2023;67(3-4). DOI: 10.1007/s11015-023-01526-z.

4. Tolkacheva A.S., Pavlova I.A. Obshchie voprosy tekhnologii tonkoj keramiki: ucheb. posobie [General issues of fine ceramics technology: a testbook]. Yekaterinburg: Ural Publishing House, 2018, 184 p. (In Russ.)

5. Sevastyanov V.G., Simonenko E.P., Ignatov N.A., Pavelko R.G., Kuznetsov N.T. Synthesis and investigation of thermal stability of highly dispersed refractory zircons and lanthanum and neodymium hafnates for thermal barrier coatings. Kompozity i nanostruktury [Composites and nanostructures], 2009;(1):50-58. (In Russ.)

6. Andrievskaya E.R. Phase equilibria in refractory oxide systems of zirconium dioxide, hafnium and yttrium with oxides of rare earth elements. Journal of the European Ceramic Society. 2008;28(12):2363-2388.

7. Mazilin I.V., Baldaev L.H., Drobot D.V., Akhmetgareeva A.M., Zhukov A.O., Hismatullin A.G. Thermal and thermophysical properties of thermal protective coatings based on lanthanum zirconate. Perspektivnye materialy Promising materials. 2013;(7):21-30. (In Russ.)

8. State standard GOST R 9.905 - 2007 (ISO 7384:2001, ISO 11845:1995). Unified system of protection against corrosion and ageing. Methods of corrosion tests. General requirements. Moscow: Standards Publishing House, 2020. (In Russ)

9. McCormick P.G., Fros F.H. Fundamentals of mechanochemical processing. JOM. 1998:61-65.

10. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnology]. Moscow: FIZMTLIT, 2005, 416 p. (In Russ.)

11. Zhukov A.V., Chizhevskaya S.V., Pyae Pio. Heterophase synthesis of zirconium hydroxides as an alternative to precipitation methods. Khimicheskaya promyshlennost segodnya [Chemical Industry today], 2020;(3):42-47. (In Russ.)

12. Potel M. et al. Sol-gel synthesis and kinetics of crystallization of dysprosium titanate Dy2Ti2O7 for photonic applications. Mater. Chem. Physics. 2015;168:159-167.

13. Mahato N., Gupta A., Balani K. Electrolytes based on zirconium and cerium dioxide for solid oxide fuel cells: review. Nanomaterials and energy. 2012;1(1):27-45.

14. Ma S., Li H., Liu S., Zhu K., Ho D., Lee J.-J., Song H. Production of transparent ceramics Lu2O3: Ec using powder consisting of monodisperse spheres. International ceramics. 2015;41(8):9577-9584.

15. Kuznetsov M.V., Iorozov Yu.G. Sposob polucheniya slozhnyh oksidnyh soedinenij redkozemelnyh metallov [Method for obtaining complex oxide compounds of rare earth metals]. Рatent RF, no. 2430884 C1, 2011.

16. Zakharov Yu.D., Krasovsky V.D. Makovsky A.V. et al. Neitronnopogloshchayushchiy material [Neutron-absorbing material]. Рatent RF, no. 2142654 C1, 1999.

17. Reznichenko V.A., Averin V.V., Olyunina T.V. Titanaty: nauchnye osnovy, tekhnologiya, proizvodstvo [Titanates: scientific foundations, technology, production]. Moscow: Nauka, 2010, 267 p. (In Russ.)

18. Ermilov A.G., Bogatyreva E.V. Predvaritelnaya mekhanoaktivatsiya [Preliminary mechanical activation]. Moscow: MISIS Publishing house, 2012, 135 p. (In Russ.)

19. Lyashenko L.P., Nikonov Yu.P., Rayevsky A.V., Shcherbakova L.G. The mechanism of formation of fluorite-like phases in systems up to TI2 Y2O3 (Er2O3, in sc2o3 samples). Materialovedenie [Materials Science], 1999;(1):29-33. (In Russ.)

20. Grigorieva T.F., Barinova A.P. et al. Nanocrystalline complex oxides obtained by mechanochemical synthesis. Khimiya v interesah ustojchivogo razvitiya [Chemistry in the interests of sustainable development], 1998;6(2-3):115-119. (In Russ.)

21. Risovanny V.D., Zakharov A.V., Klochkov E.P. et al. Poglotitel neitronov dlya yadernyh reaktorov [Neutron absorber for nuclear reactors]. Patent RF, no. 2124240 C1, 1998.

22. Risovany V.D., Zakharov A.V., Muraleva E.M., Sokolov V.F. Development of production of dysprosium hafnate as an absorbing material for regulatory bodies of selective thermal neutron reactors. Sbornik trudov AO GNC NIIAR [Proceedings of JSC SSC NIIAR]. Dimitrovgrad, 2011;(2):8-13. (In Russ.)

23. Komissarova L.N., Shatsky V.M., Pushkin G.Ya., Shcherbakova L.G., Mamsurova L.G., Sukhanova G.E. Soedineniya redkozemelnyh elementov. Karbonaty, oksalaty, nitraty, titanaty [Compounds of rare earth elements. Carbonates, oxalates, nitrates, titanates]. Moscow: Nauka, 1984, 235 p. (In Russ.)

24. Shlyakhtina A.V. Morphotropy, polymorphism and isomorphism of complex oxides based on Ln2M2O7 (b = La–Lu, m, SK; M = ti, ZR, HF and ZP). Kristallografiya [Crystallography], 2013;58(4):545-560. (In Russ.)

25. Gonzalez M., Moore K., Jurado J.R. and Durand P. Solid-phase reactions, microstructure and phase relations in the ZrO2-rich region of the ZrO2-Yb2O3 system. Journal of Materials Science. 1993;28(13):3451- 3456.

26. Konakov V.G., Shorokhov A.V., Borisova N.V., Golubev S.N., Solovyova E.N., Ushakov V.M. Influence of dispersion of nanoscale precursors Y2O3-ZrO2, Ce2O3-ZrO2 and Ce2O3-Y2O3-ZrO2 on electrical conductivity and sensory properties of finished ceramics. Reviews on advanced materials science. 2012;32(1):34-43.

27. Cherkasova T.G., Cherkasova E.V., Tikhomirova A.V., Gilyazidinova N.V., Klyuev R.V., Martyushev N.V., Karlina A.I., Skiba V.Y. Investigation of content and possibility of extracting matrix and rare elements from ash and slag wastes of heat power plant. Metallurg [Metallurgist], 2022;65(11-12):1324-1330. DOI: 10.1007/s11015-022-01278-2.