DOI: 10.18503/1995-2732-2025-23-1-54-61
Abstract
Problem Statement (Relevance). High-entropy alloys are promising materials due to their unique physical and mechanical properties, making them attractive for use in aerospace, energy, and other high-tech industries. However, the thermal characteristics of high-entropy alloys, particularly their phase transformations and stability at high temperatures, remain insufficiently studied. The CoCrFeMnNi alloy, one of the most well-known high-entropy alloys, requires a detailed research of its thermodynamic properties to optimize its industrial applications. Objectives. The primary objective of this research is to conduct a detailed study of the thermal properties of the CoCrFeMnNi alloy using differential thermal analysis. Methods Applied. The differential thermal analysis method was applied to investigate the thermal effects accompanying phase transformations in the alloys during heating and cooling. The objects of the study were five alloy samples with varying Fe and Mn content. Originality. This is the first time that the thermal properties of the CoCrFeMnNi alloy have been studied using differential thermal analysis, allowing for the identification of phase changes and heat flow behavior for different concentrations of elements. Result. Data describing phase transitions and structural changes during the melting and crystallization of alloys with varying Fe and Mn content were obtained. The characteristic temperature and time parameters of these processes were established. Practical Relevance. The study results can be used to optimize high-entropy alloys compositions for various industries requiring high heat resistance and deformation stability, as well as for the development of new materials with improved performance characteristics.
Keywords
high-entropy alloys, CoCrFeMnNi, differential thermal analysis, phase transitions, thermal characteristics, iron, manganese, cobalt, chromium, nickel
For citation
Shubert A.V., Konovalov S.V., Panchenko I.S. Study of the Thermal Properties of High-Entropy Alloys System Based on Cocrfemnni by Differential Thermal Analysis. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 1, pp. 54-61. https://doi.org/10.18503/1995-2732-2025-23-1-54-61
1. Yeh J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM. 65 545 2013:1759-1771. https://doi.org/10.1007/s11837-013-0761-6.
2. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;(4):515-534. https://doi.org/10.1038/s41578-019-0121-4.
3. Rogachev A.S. Structure, stability, and properties of high-entropy alloys. Fizika metallov i metallovedenie [Physics of Metals and Metallography], 2020;121(8):807-841. (In Russ.) DOI: 10.31857/S0015323020080094. EDN REFBUL.
4. Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science. 2021;120:1-36. DOI: 10.1016/j.pmatsci.2020.100754.
5. Mridha S., Das S., Aouadi S., Mukherjee S., Mishra R.S. Nanomechanical behavior of CoCrFeMnNi high-entropy alloy. JOM Journal of the Minerals Metals and Materials Society. 2015;67(10):2296-2302. DOI: 10.1007/s11837-015-1566-6.
6. Zaddach A.J., Scattergood R.O., Koch C.C. Tensile properties of low-stacking fault energy high-entropy alloys. Science and Engineering: A. 2015;636:373-378. DOI: 10.1016/j.msea.2015.03.109.
7. Moshchensky Y.V. Method of models in differential thermal analysis. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo un-ta. Seriya: Fiziko-matematicheskie nauki [Bulletin of Samara State Technical University. Series: Physical and Mathematical Sciences], 2001;(12). Available at: https://cyberleninka.ru/article/n/metod-modeley-v-differentsialnom-termicheskom-analize. (In Russ.)
8. Egunov V.P. Vvedenie v termicheskiy analiz [Introduction to thermal analysis]. Samara: SamVen, 1996, 270 p. (In Russ.) EDN TOPBCX.
9. Yanyak S.V., Komissarova I.I. Study of heat resistance of solid alloys by the method of differential thermal analysis. Vestnik Vologodskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki [Bulletin of Vologda State University. Series: Technical Sciences], 2021;(1(11)):27-31. (In Russ.) EDN KTAEDN.
10. Kulikov M.A. Study of properties of substituted alkylstyryl ketones and their azomethine derivatives by the method of differential thermal analysis. Vestnik Tekhnologicheskogo universiteta [Bulletin of Technological University], 2019;22(12):12-14. (In Russ.) EDN QVPFLP.
11. Shoshin E.A., Ivashchenko Y.G., Polyakov A.V., Bulanov V.M. Study of cement hydrosilicates modified by isomeric disaccharides using the method of differential thermal analysis. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitelnogo universiteta [News of the Kazan State University of Architecture and Engineering], 2017;(1(39)):244-249. (In Russ.) EDN YIOAZX.
12. Drobyshev V.K., Panchenko I.A., Konovalov S.V. Mechanical properties and microstructure of CoCrFeMnNi alloy system. Polzunovskiy vestnik [Polzunov Bulletin], 2024;(2):249-254. (In Russ.) DOI: 10.25712/ASTU.2072-8921.2024.02.033. EDN OLJRHK.
13. Osintsev K.A., Panova V.S., Kuznetsova V.A., et al. First-line study of the stability of CoCrFe40-xMnxNi (x = 5, 10, 15, 20) high-entropy alloys. Fundamentalnye problemy sovremennogo materialovedenia [Basic Problems of Material Science], 2023;20(4):508-514. (In Russ.). DOI: 10.25712/ASTU.1811-1416.2023.04.010.
14. Kovalev D.Y., Rogachev A.S., Kochetov N.A., Vadchenko S.G. Evolution of the phase composition of Cantor alloy CoCrFeNiMn during prolonged annealing. Fizika metallov i metallovedenie [Physics of Metals and Metallography], 2022;123(11):1232-1241. (In Russ.) DOI: 10.31857/S0015323022600794. EDN ZTWBJS.
15. Melnikov E.V., Astafurov S.V., Reunova K.A., et al. Effect of thermal and thermomechanical treatment on the microstructure and mechanical properties of multicomponent FeCrMnNiCo0.85C0.15 alloy. Pisma o materialah [Letters on Materials], 2021;11(4(44)):375-381. (In Russ.) DOI: 10.22226/2410-3535-2021-4-375-381. EDN CQVBDH.