
ТЕХНОЛОГИИ ОБРАБОТКИ МАТЕРИАЛОВ 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––   Вестник МГТУ им. Г.И. Носова. 2025. Т.23. №4 94 

 

 
 

 

ISSN 1995-2732 (Print), 2412-9003 (Online) 

УДК 67.02 

DOI: 10.18503/1995-2732-2025-23-4-94-101  

ОЦЕНКА УДАРНОЙ ВЯЗКОСТИ, ХЛАДОСТОЙКОСТИ И СТРУКТУРЫ 

УГЛЕРОДИСТОЙ СТАЛИ 20, АРМИРОВАННОЙ СТАЛЬЮ 12Х18Н10Т 

МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ 

Колчин П.В.
1
, Костылев К.А.

1
, Чернигин М.А.

2
 

1 Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова  

Российской академии наук, Нижний Новгород, Россия 
2 Нижегородский государственный технический университет им. Р.Е. Алексеева, Нижний Новгород, Россия 

Аннотация. Современное развитие аддитивных технологий позволяет создавать новые композиционные мате-

риалы с более высокими характеристиками, состоящие из двух и более различных сплавов. Это открывает воз-

можности по изготовлению оборудования и конструкций, более стойких к экстремальным условиям эксплуата-

ции, таким как низкие температуры Крайнего севера и Арктики. В данной статье проведена оценка хладостой-

кости материала, состоящего из стали 20, который армирован сталью 12Х18Н10Т с целью образования участ-

ков вязкого разрушения при хрупком разрушении основного материала в условиях низких температур. Для до-

стижения поставленной цели и задач были изготовлены биметаллические образцы, где второй материал нано-

сился методом лазерной наплавки проволоки и расположен в виде полос по трем сторонам на поверхности об-

разцов. В работе применялись методы испытания на ударный изгиб, микроструктурного и фрактографического 

анализа. Результаты показывают, что армирование стали с ОЦК-решеткой сплавом с  ГЦК-решеткой аддитив-

ным методом лазерной наплавки позволяет сохранить в изломе образцов вязкую составляющую на уровне 9% 

поперечного сечения образца при выбранной плотности армирования, что увеличивает ударную вязкость в 2,2 

раза при температуре испытания –50°C. Однако ввиду разницы в свойствах материалов при разрушении дей-

ствуют напряжения, снижающие ударную вязкость при нормальной температуре. В связи этим возникает по-

требность в выработке методов по снижению данного негативного влияния за счет подбора более эффективной 

схемы армирования, термической обработки,  методов компьютерного моделирования и сочетания материалов. 

Ключевые слова: хладостойкость, мультиметаллические материалы, аддитивные технологии, лазерная наплав-

ка, армирование 
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Abstract. Modern development of additive technologies allows for creation new composite materials with higher char-

acteristics, consisting of two or more different alloys. This opens up opportunities for manufacturing equipment and 

structures that are more resistant to extreme operating conditions, such as low temperatures of the Far North and the 

Arctic. This article assesses the cold resistance of a material consisting of steel 20, which is reinforced with steel 

12Cr18Ni10Ti in order to form areas of viscous fracture during brittle fracture of the base material at low temperatures. 

To achieve the stated objectives, bimetallic samples were manufactured, where the second material was applied by laser 

wire cladding and located in the form of stripes on three sides of the samples surface. The authors used the methods of 

impact bending testing, microstructural and fractographic analysis. The results show that reinforcement of BCC steel 

with FCC alloy by additive laser cladding method allows for preserving viscous component in fracture of samples at the 

level of 9% of cross-section of sample, at the selected reinforcement density, which increases impact toughness by 2.2 

times at test temperature of –50°C. However, due to difference in properties of materials, there are stresses during de-

struction, which reduce impact toughness at normal temperature. In this regards, there is a need to develop methods for 

reduction of this negative influence by means of selection of more effective reinforcement scheme, heat treatment, 

methods of computer modeling and combination of materials. 
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Введение 

Арктика и Северный Ледовитый океан представ-

ляют собой стратегически важные территории для 

России. Регион обладает огромным потенциалом бла-

годаря своим природным ресурсам и возможностям в 

качестве логистического коридора между Европой и 

Азией. В связи с этим государство активно развивает 

инфраструктуру этих территорий, что отражено в 

документах, таких как «Стратегия развития Арктиче-

ской зоны России до 2035 года». Однако освоение 

арктических регионов сопряжено с рядом техниче-

ских и климатических вызовов. Одной из ключевых 

проблем является экстремально низкая температура 

окружающей среды, которая может достигать –60°C и 

ниже. Для обеспечения надежности конструкций и 

оборудования в таких условиях требуется особое 

внимание к выбору хладостойких материалов [1]. 

Под хладостойкостью понимается способность 

металлов сохранять свои механические свойства, та-

кие как вязкость и пластичность, при температурах от 

0 до –269°C [1]. Исследования показывают, что при 

снижении температуры механизм разрушения метал-

лов может изменяться. Например, работы А.Ф. Иоф-

фе, посвященные влиянию низких температур на 

свойства металлов, выявили закономерности в пове-

дении материалов и предложили объяснение меха-

низма вязко-хрупкого перехода (рис. 1). Данные ис-

следования были развиты в дальнейших работах Н.Н. 

Давиденкова и Я.Б. Фридмана [2]. 

 

Рис. 1. Модель  А.Ф. Иоффе хрупкого (I) и вязкого (II) 

разрушений стали 

Fig. 1. A.F. Ioffe's model of brittle (I) and ductile (II) 

fractures of steel 
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Согласно модели А.Ф. Иоффе, снижение темпе-

ратуры оказывает относительно небольшое влияние 

на сопротивление отрыву, однако существенно меня-

ет предел текучести. Это приводит к смене механизма 

разрушения материала. Критическая точка пересече-

ния кривых σт и σотр определяет температуру вязко-

хрупкого перехода Ткр. При температурах ниже Ткр 

разрушения становятся хрупкими [6]. 

Экспериментальные исследования [3–8] показали, 

что различия в кристаллическом строении металлов 

существенно влияют на их поведение при снижении 

температуры. Металлы с гранецентрированной кри-

сталлической решеткой (ГЦК) сохраняют вязкий ме-

ханизм разрушения даже при низких температурах, 

хотя их ударная вязкость плавно снижается. В свою 

очередь, металлы с объемно-центрированной кри-

сталлической решеткой (ОЦК) демонстрируют более 

сложное поведение: после определенной температу-

ры в изломах могут появляться зоны хрупкого раз-

рушения, а при дальнейшем снижении температуры 

материал полностью охрупчивается [9]. Охрупчива-

ние представляет серьезную опасность, так как тре-

щины распространяются быстро, не давая возможно-

сти своевременно выявить проблему и принять меры 

для предотвращения разрушения конструкции и, со-

ответственно, аварии. 

Для оценки хладостойкости материалов исполь-

зуются две основные характеристики: температура 

вязко-хрупкого перехода Т50 и температура, при ко-

торой ударная вязкость KCV достигает критического 

значения 20 Дж/см². Температура Т50 определяется 

как температура, при которой доля вязкой и хрупкой 

составляющих в изломе равна 50 %. Чем ниже значе-

ние Т50, тем выше хладостойкость материала. Анало-

гично чем ниже температура, при которой достигает-

ся критическое значение KCV, тем более хладостой-

ким считается металл [10]. 

На сегодняшний день существует несколько ме-

тодов повышения хладостойкости металлов. Наибо-

лее распространены следующие подходы: использо-

вание металлов с ГЦК-решеткой, легирование и мик-

ролегирование, рафинирование и раскисление, при-

менение термической или термомеханической обра-

ботки, а также оптимизация конструктивных реше-

ний [11, 12]. Эти методы направлены либо на полное 

исключение хрупкого разрушения при заданной тем-

пературе, либо на увеличение доли вязкой составля-

ющей в изломе, что позволяет сдвинуть температуру 

полного перехода металла из вязкого состояния в 

хрупкое за пределы эксплуатационных условий. 

С развитием современных технологий производ-

ства материалов появились новые способы создания 

биметаллических и мультиметаллических компози-

ций. К таким технологиям относятся селективное 

лазерное сплавление, электродуговая наплавка по-

рошков и проволоки [13]. Благодаря этим методам 

стало возможным производить изделия, где основной 

металл армируется вторым материалом, что значи-

тельно повышает их эксплуатационные характери-

стики [14, 15]. Особый интерес представляет оценка 

хладостойкости металлических композиций, содер-

жащих основной металл с ОЦК-решеткой и дополни-

тельное армирование металлом с ГЦК-решеткой. 

Преимущество такой композиции заключается в 

том, что биметаллический материал никогда полно-

стью не переходит из вязкого состояния в хрупкое, 

поскольку всегда содержит определенный процент 

металла с ГЦК-решеткой, сохраняющего свою вяз-

кость на всем диапазоне температур. Процентное со-

держание каждого из металлов в сечении можно ре-

гулировать в зависимости от требуемых характери-

стик в каждом конкретном случае. 

Материалы и методы исследования 

В качестве основного материала для изготовле-

ния образцов была выбрана углеродистая сталь 20 с 

ОЦК-решеткой. Для армирующего материала исполь-

зована аустенитная нержавеющая сталь 12Х18Н10Т с 

ГЦК-решеткой. Химический состав этих сталей пред-

ставлен в табл. 1. 

Сталь 20 широко применяется в машиностроении 

для производства деталей машин и металлоконструк-

ций благодаря своей хорошей свариваемости, что 

является ключевым фактором при создании биметал-

лических образцов. Сталь 12Х18Н10Т представляет 

собой высоколегированный аустенитный сплав, кото-

рый характеризуется высокой коррозионной стойко-

стью и относится к классу криогенных материалов. 

Ее допустимый температурный диапазон эксплуата-

ции составляет от –196 до +600 °C [16]. 

Таблица 1. Химический состав сталей 

T a b l e  1 .  Chemical composition of steels 

Сталь 20 

C Si Mn Ni S P Cr Cu 

0,17–

0,24 

0,17–

0,37 

0,35–

0,65 
до 0,3 

до 

0,04 

до 

0,035 

до 

0,25 
до 0,3 

Сталь 12Х18Н10Т 

C Si Mn Ni S P Cr Cu Ti 

до 

0,12 

до 

0,8 
до 2 9–11 

до 

0,02 

до 

0,035 
17–19 

до 

0,3 

0,6–

0,8 

 
Для оценки влияния низких температур на меха-

нические свойства образцов проводились испытания 

на ударный изгиб согласно ГОСТ 9454-78. Испыта-

ния выполнялись на образцах с поперечным сечением 

10×10 мм и V-образным надрезом на маятниковом 

копре РН-300 при температурах +20 и –50°C. Нижнее 

значение температуры было выбрано для обеспече-

ния полного хрупкого разрушения стали 20. 

Для сравнительного анализа были изготовлены 

два типа образцов: монометаллический (из стали 20) 

и биметаллический (основа из стали 20 с продольным 

армированием сталью 12Х18Н10Т). Конструкция за-

готовки биметаллического образца представлена на 

рис. 2. 
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Рис. 2. Эскиз заготовки биметаллического образца 

Fig. 2. Sketch of a bimetallic sample blank 

Процесс изготовления биметаллических образцов 

включал следующие этапы: 

– Механическая обработка заготовки из стали 20 

с вырезанием треугольных канавок (рис. 3, а). 

– Послойное заполнение канавок сталью 

12Х18Н10Т методом лазерной наплавки проволоки 

диаметром 0,5 мм на оборудовании HTF 

COMBOMAX 300/3000. Режимы наплавки: мощность 

импульса 270 Вт, длительность импульса 4,5 мс, раз-

мер пятна 0,96 мм, скорость 1 мм/с, шаг импульса 

0,167 мм, защитная атмосфера – аргон. 

– Чистовая механическая обработка готовых об-

разцов (рис. 3, б). 

 
а 

 
б 

Рис. 3. Изготовление биметаллического образца:  

а – заготовка; б – готовый образец после 

наплавки 

Fig. 3. Manufacturing of a bimetallic sample: a is blank; 

б is finished sample after cladding 

Доля стали 12Х18Н10Т в поперечном сечении 

образца составляет 9,05%. В массовом соотношении 

при средней массе образца 42,8 г масса армирующего 

материала равна 4,7 г, что соответствует 10,9% от 

общей массы образца.  

Анализ микроструктуры материала выполнен с 

использованием металлургического микроскопа мо-

дели Альтами МЕТ 1С. 

Полученные результаты и их обсуждение 

Структура поперечного сечения биметаллическо-

го образца представлена на рис. 4. Травление выпол-

нено по стали 20. На изображении видно, что матери-

ал имеет ферритно-перлитную структуру, при этом 

средний размер зерен феррита составляет 16 мкм. В 

местах сплавления стали 20 со сталью 12Х18Н10Т 

наблюдаются локальные участки наслоения двух ма-

териалов. При этом трещины или отслоения сплавов 

не выявлены. Имеющиеся особенности строения ха-

рактерны для изделий, получаемых аддитивным ме-

тодом лазерного сплавления и наплавки [17, 18]. 

 
а 

 
б 

Рис. 4. Структура образца в поперечном сечении:  

а – структура стали 20, увеличение ×200;  

б – структура в зоне сплавления стали 20  

и 12Х18Н10Т, увеличение ×200 

Fig. 4. Sample structure in cross section: a isstructure  

of steel 20, magnification ×200; б is structure  

in the fusion zone of steel 20 and 12Cr18Ni10Ti, 

magnification ×200 

Значения ударной вязкости для различных типов 

образцов представлены в табл. 2. 
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Таблица 2. Значения ударной вязкости образцов 

T a b l e  2 .  Impact toughness values of samples 

Образец 
KCV(+20°С),  

Дж/ см2 

KCV(–50°С),  

Дж/ см2 

Сталь 20 198,19 4,75 

Сталь 20 + 

12Х18Н10Т 
130,31 10,56 

 
Результаты испытаний показывают следующее: 

– При температуре +20°С сталь 20 демонстрирует 

вязкий механизм разрушения с характерным матовым 

волокнистым изломом и выраженной пластической 

деформацией образца (рис. 5, а). Величина KCV со-

ставляет 198,19 Дж/см². 

– При температуре –50°С сталь 20 разрушается по 

хрупкой схеме (рис. 5, б). Область разрушения имеет 

100%-й хрупкий излом, отличающийся блеском, ру-

чьистым узором и фасетками скола. Образец практи-

чески не деформируется. Величина KCV составляет 

4,75 Дж/см². 

 
а 

 
б 

Рис. 5. Изломы стали 20: а – излом при температуре 

+20°С;  б – излом при температуре –50°С 

Fig. 5. Fractures of steel 20: a isfracture at temperature 

+20°С; б  is fracture at temperature –50°С 

При испытании биметаллических образцов 

наблюдаются различия во внешнем виде изломов и 

величине KCV по сравнению с образцами из стали 

20. Биметаллический образец имеет меньшую сте-

пень пластической деформации. Поверхность излома 

на рис. 6, а представляет собой две области: вязкого 

разрушения по контуру образца, включающая как 

основной, так и армирующий материалы; хрупкого 

разрушения в сердцевине образца, состоящая только 

из основного материала. 

На рис. 6, в видно, что хрупкая зона может пред-

ставлять собой не единый участок, а ряд областей, 

между которыми наблюдаются вязкие разрушения. 

Доля хрупкой составляющей в биметаллических об-

разцах составляет в среднем 26%. Образец имеет все 

характерные зоны для вязкого разрушения, включая 

зарождение трещины, распространение трещины, 

утяжки и долома. Значение ударной вязкости KCV 

(+20°С) составляет 130,3 Дж/см². 

Твердость стали 20 в сердцевине биметалличе-

ских образцов составляет 108 НВ, что указывает на 

отсутствие увеличения еѐ твердости вследствие мно-

гократных термических воздействий в процессе 

наплавки. Охрупчивание нельзя связать с темпера-

турным фактором, поскольку при +20°С аналогичные 

образцы без наплавки разрушаются по вязкой схеме. 

Поведение биметаллического материала можно объ-

яснить сочетанием нескольких факторов: внутренни-

ми напряжениями, вызванными наплавкой, разно-

стью в механических свойствах двух материалов и 

скоростью деформации при испытаниях [19–21]. 

При испытании биметаллических образцов в зоне 

надреза разрушение происходит по вязкой схеме. По 

мере развития разрушения в сторону сердцевины 

включаются зоны с наплавкой из стали 12Х18Н10Т, 

которые препятствуют пластической деформации 

стали 20, удерживают области основного материала у 

поверхности и не дают им переместиться к центру. 

Это создает напряженное состояние в центральной 

области образца, где изменение формы меньше, чем 

изменение объема при деформации, что соответству-

ет условию образования областей хрупкого разруше-

ния. По мере прохождения центральной области 

напряжения в материале уменьшаются, и разрушение 

завершается по вязкой схеме. 

При испытании биметаллических образцов при 

температуре –50°С основной материал разрушается по 

хрупкой схеме аналогично образцам из стали 20 без 

армирования. Участки излома, заполненные армиру-

ющим сплавом, имеют матовую поверхность и при-

знаки пластической деформации. Армирующие поло-

сы на тыльной поверхности образца имеют зону доло-

ма (рис. 6, б, г). Таким образом, зоны хрупкого и вяз-

кого разрушения разделены между сталью 20 и сталью 

12Х18Н10Т соответственно. Средняя величина удар-

ной вязкости KCV (–50°С) составляет 10,56 Дж/см². 
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Рис. 6. Изломы стали 20 с наплавкой стали 12Х18Н10Т: а – излом при температуре +20°С;   

б – излом при температуре –50°С; в – излом при температуре +20°С с указанием областей хрупкого  

и вязкого разрушения; г – излом при температуре –50°С с указанием областей хрупкого  

и вязкого разрушения 

Fig. 6. Fractures of steel 20 with 12Cr18Ni10Ti steel cladding: a is fracture at a temperature of +20°C; б is fracture  

at a temperature of –50°C; в is fracture at a temperature of +20°C with an indication of the areas of brittle  

and ductile fracture; г is fracture at a temperature of –50°C with an indication of the areas of brittle and ductile 

fracture 

Заключение 

По результатам проведенного исследования уста-

новлено, что армирование стали 20 наплавкой из ста-

ли 12Х18Н10Т, занимающей 9% поперечного сечения 

образца, увеличивает ударную вязкость биметалличе-

ских образцов в 2,2 раза при температуре –50 °C по 

сравнению с образцами из стали 20 без наплавки. 

При этом наблюдается снижение значения удар-

ной вязкости биметаллических образцов на 34% при 

температуре +20 °C по сравнению с образцами из 

стали 20. Данное снижение связано с появлением 

хрупкой составляющей в изломе, что обусловлено 

внутренними напряжениями в основном материале, 

возникающими в результате наплавки армирующего 

материала, а также различием в механических свой-

ствах сталей 20 и 12Х18Н10Т. 

Для дальнейшего повышения характеристик би-

металлических образцов требуется реализация до-

полнительных мероприятий по устранению внутрен-

них напряжений. В качестве возможных решений 

могут быть применены: 

– комплексная термическая обработка для снятия 

остаточных напряжений; 

– оптимизация конфигурации и плотности арми-

рующей сетки из сплавов с ГЦК-решеткой; 

– использование методов математического моде-

лирования (например, метод конечных элементов – 

МКЭ) и топологической оптимизации для обеспече-

ния большей стойкости к хрупкому разрушению в 

направлении прикладываемых нагрузок. 

Таким образом, полученные результаты подтвер-

ждают эффективность применения биметаллических 

композитов для создания конструкций, работающих в 

условиях низких температур, однако требуют даль-

нейшей оптимизации технологических параметров их 

изготовления. 
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