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ПРОКАТКА - ВОЛОЧЕНИЕ В МОНОЛИТНОЙ ВОЛОКЕ»  

ПРИ ПРОИЗВОДСТВЕ ПРОВОЛОКИ С МЕЛКОЗЕРНИСТОЙ 
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Аннотация. Организация конкурентоспособного производства проволоки различного назначения с мелкозер-

нистой структурой является в настоящее время актуальной задачей метизного передела отечественной метал-

лургии. В статье описан новый способ, позволяющий без изменения действующей  технологической схемы по-

высить эффективность производства проволоки. Было выполнено моделирование в программном комплексе 

Deform-3d трех вариантов получения проволоки из стали марки 80Р: волочение в монолитной волоке; совме-

щенный процесс «холодная прокатка - волочение в монолитной волоке» и новый процесс – «холодная асиммет-

ричная прокатка - волочение в монолитной волоке». Оценивалось распределение накопленной степени дефор-

мации в проволоке, полученной данными способами. Сравнительный анализ полученных результатов показал, 

что наименьшие значения накопленной степени деформации имеет проволока, протянутая в монолитной воло-

ке. При совмещенном процессе плющения (прокатки круглой заготовки в валках с гладкой бочкой) – волочение 

в монолитной волоке – уровень накопленной степени деформации значительно растет благодаря прокатке. 

Применение асимметричной прокатки с соотношением скоростей вращения верхнего и нижнего валков, рав-

ным 2 или 5, еще больше повышает величину накопленной степени деформации. Показано, что способ «холод-

ная асимметричная прокатка – волочение в монолитной волоке» позволяет без замены оборудования и другой 

инфраструктуры повысить степень накопленной деформации в проволоке и тем самым обеспечить получение 

мелкозернистой структуры. Показаны также широкие возможности управления режимами деформации как в 

прокатной клети, так и в монолитной волоке, что открывает широкие возможности для совершенствования 

процесса волочения. 
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накопленная степень деформации 
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APPLICATION OF THE COMBINED METHOD “ASYMMETRIC 

ROLLING - DRAWING IN A MONOLITHIC DIE” IN THE PRODUCTION 

OF WIRE WITH FINE-GRAINED STRUCTURE 

Kharitonov V.A., Pesin A.M., Usanov M.Yu., Lokotunina N.M., Melikhov E.D. 

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia 

Abstract. The organization of a competitive production of wires for various applications with a fine-grained structure is 

currently a crucial task for the hardware manufacturing sector of domestic metallurgy. This paper describes a novel 

method that enables increasing the efficiency of wire production without changing the existing technological scheme. 

Numerical simulations were performed in the Deform-3D software package for three variants of wire manufacturing 

from 80R steel: drawing in a monolithic die; the combined process of “cold rolling – drawing in a monolithic die”; and 

a new process such as “cold asymmetric rolling – drawing in a monolithic die”. The distribution of accumulated strain 

in the wire obtained by these methods is evaluated. A comparative analysis of the results shows that the lowest accumu-

lated strain values are obtained in wire drawn only in a monolithic die. In the combined process of flattening (rolling of 

a round blank with smooth rolls) followed by drawing in a monolithic die, the accumulated strain level increases signif-

icantly due to rolling. The application of asymmetric rolling with a ratio of the rotation speeds of the upper and lower 

rolls equal to 2 or 5 further increases the level of accumulated strain. It is demonstrated that the process of “cold asym-

metric rolling – drawing in a monolithic die” allows for increasing the accumulated strain in the wire and thus produc-

ing a fine-grained structure without replacement of the existing equipment or infrastructure. Additionally, wide oppor-

tunities for controlling deformation modes in both the roll mill stand and monolithic die are revealed, which opens up 

promising ways for further improvement of the drawing process. 

Keywords: wire, drawing, rolling, asymmetric rolling, combined processes, modeling, accumulated strain. 
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Введение 

Волочение в монолитных волоках на протяжении 
многих веков является основной операцией техноло-
гического процесса изготовления проволоки различно-
го назначения как из черных, так и цветных металлов и 
их сплавов. Широкое применение волочения в моно-
литных волоках как способа обработки металлов дав-
лением объясняется простотой применяемого инстру-
мента по конструкции, изготовлению и эксплуатации, 
хорошей теоретической изученностью и наличием 
всей необходимой инфраструктуры (оборудование, 
инструмент, технологические смазки и т.п.). Однако 
при этом схема ввода энергии в очаг деформации (че-
рез передний конец), реактивное трение, неблагопри-
ятная схема напряженного состояния металла при де-
формации значительно снижают качество проволоки и 
повышают затраты на ее изготовление. Этому же спо-
собствует неравномерность деформации по сечению 
проволоки, присущая этому способу. Схема деформа-
ции при волочении – схема истечения, эффективная 
при формоизменении, затрудняет получение мелко-
дисперсной равновесной микроструктуры. 

Введение при производстве проволоки в качестве 

основной операции нового способа обработки метал-

лов давлением, например, протяжки в роликовых во-

локах, холодной (теплой) сортовой прокатки в двух- 

и многовалковых калибрах, требует разработки и ре-

ализации новых технологических схем, что очень 

сложно, дорого и на сегодня просто нецелесообразно. 
На наш взгляд, волочение нужно сохранить в ка-

честве основной операции, а эффективность произ-
водства проволоки повысить разработкой новых ком-
бинаций совмещенных процессов обработки метал-
лов давлением. При этом, наряду с устранением не-
достатков волочения в монолитной волоке, нужно 
поставить дополнительную задачу получения уль-
трамелкодисперсных структур. Для решения этих 
задач необходимо применять совмещение волочения 
с методами интенсивной пластической деформации. 
Например, совмещенный способ деформирования 
прессование-волочение, который обладает суще-
ственным преимуществом по сравнению с ранее из-
вестными способами получения металла с ультрамел-
козернистой структурой. Данный способ деформиро-
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вания за счет совмещения двух способов – интенсив-
ной пластической деформации в равноканальной сту-
пенчатой матрице и процесса волочения – позволяет 
получать проволоку требуемых размеров и формы 
поперечного сечения, обладающую ультрамелкозер-
нистой структурой. В  этом направлении известны 
работы Карагандинского государственного индустри-
ального университета и других университетов [1, 2]. 

Разработанный учеными Донецкого физико-
технического института совмещенный способ про-
катки со сдвигом и традиционного волочения позво-
ляет получить проволоку малых сечений без проме-
жуточного отжига, благодаря большому запасу пла-
стичности, что обеспечивается формированием спе-
цифической структуры с мелким, однородным, изо-
тропным, равноосным зерном с преимущественно 
большеугловыми границами и низкой плотностью 
дислокаций в теле зерна [3, 4]. 

В Магнитогорском государственном техническом 
университете еще в 50-х годах прошлого века под 
руководством профессора М.И. Бояршинова были 
начаты исследования по применению многовалковых 
калибров для изготовления сортового проката и про-
волоки. В 80-е годы прошлого века на Белорецком 
металлургическом комбинате был смонтирован и пу-
щен в эксплуатацию пятиклетьевой прокатный стан. 
Развитие этого направления показало эффективность 
нового процесса «прокатка - волочение» и пути его 
реализации [5]. 

Как показали проведенные нами исследования, 
волочение круглой проволоки в овальной монолит-
ной волоке приводит к изменению распределения 
накопленной степени деформации по сечению прово-
локи. Применение в маршруте волочения круглых и 
овальных монолитных волок дает возможность 
управлять характером распределения накопленной 
степени деформации проволоки, повышая тем самым 
ее качество [6]. 

За рубежом также проводились работы по иссле-
дованию влияния диаметра валков на распределение 
деформации, изменение формы, контактное давление 
и значение повреждаемости заготовки при плоской 
прокатке проволоки с целью управления свойствами. 
Показано, что неравномерность деформации в плю-
щеной проволоке возрастает с увеличением диаметра 
валков. Данные различия в распределениях деформа-
ции, изменении формы и значениях повреждаемости 
обусловлены изменением длины контактного участка, 
напрямую зависящим от диаметра валков при плос-
кой прокатке проволоки [7]. Сравнительный анализ 
механических свойств проволоки, полученной воло-
чением в монолитных волоках и сортовой прокаткой, 
посвящены работы [8, 9]. Было выявлено большое 
различие в механических свойствах. Однако в данных 
работах рассматриваются отдельно способы только 
волочения или только прокатки круглой заготовки.   

Асимметричная прокатка в настоящее время 
применяется в основном при листовой холодной и 
горячей прокатке различных металлов и их сплавов. 

При этом обеспечивается получение градиентных 
мелкодисперсных микроструктур, обеспечивающих 
повышение прочности и пластичности [10–12]. Таким 
образом, значительный исследовательский интерес 
представляет оценка возможности этого процесса при 
производстве дргуих изделий, включая проволоку. 

Целью данной работы является оценка распреде-
ления накопленной деформации в высокоуглероди-
стой проволоке, полученной волочением в монолит-
ных волоках и совмещенными способами «прокатка- 
волочение» на основе моделирования. 

Материалы и методы исследования 

Для исследования процесса «асимметричная про-

катка - волочение» было выполнено моделирование в 

программном комплексе Deform-3d. Задача принима-

лась пластическая, изотермическая. Температура за-

готовки 20°С. Диаметр исходной заготовки 16,00 мм, 

длина 150 мм, сталь марки 80Р. При постановке зада-

чи заготовка разбивалась на 68569 конечных элемен-

тов. Тип сетки – абсолютная, коэффициент отноше-

ния равен 1. Размер ячеек при данных условиях со-

ставил 1 мм. В начале заготовка обжимается на плос-

кий овал в прокатной кассете, затем проходит через 

монолитную волоку. На выходе проволоки из волоки 

к ее переднему концу приложено тянущее усилие и 

осуществляется процесс волочения (рис. 1).  

 

Рис. 1. Модель процесса «прокатка - волочение» 

Fig. 1. Model of the rolling-drawing process 

Валки прокатной кассеты принимались диамет-

ром 200 мм, обжатие составляло 1 мм на сторону (то 

есть получался плоский овал высотой 14,0 мм). При 

этом нижний валок всегда оставался скоростным и 

вращался со скоростью 10 рад/с. Скорость верхнего 

валка менялась и его скорость в разных эксперимен-

тах составляла соответственно 10, 5 и 2 рад/с. 

Монолитная волока имеет диаметр 13,76 мм, ра-

бочий угол – 2α = 12º. 

Коэффициент трения при прокатке и волочении 

задавался в соответствии с законом Кулона. Для про-

катки значение коэффициента трения составляло 0,3 

[10], а для волочения в монолитной волоке он прини-

мался равным 0,08. 
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Полученные результаты и их обсуждение 

Для сравнения результатов моделирования про-

катки и волочения был смоделирован процесс воло-

чения в монолитной волоке одной протяжки с диа-

метра 16,00 мм на диаметр 13,76 мм со скоростью 

1000 мм/с. Измеренное усилие волочения при этом 

составило 84,22 кН. 

Затем выполнено моделирование с валками, вра-

щающимися с одинаковой скоростью 10 рад/с. При 

этом передний конец проволоки на выходе из роли-

ков подходит к монолитной волоке и фактически 

начинается процесс прессования. Однако усилия от 

прокатки не хватает, чтобы полностью «продавить» 

заготовку через монолитную волоку, и валки начи-

нают буксовать по поверхности проволоки. Данное 

усилие можно измерить, оно составило 31 кН. Для 

измерения скорости перемещения заготовки на ее 

передний и задний торец были нанесены точки и с 

помощью инструмента «Point Traсking» были полу-

чены скорости переднего и заднего концов заготовки 

в процессе прокатки и они составили соответственно 

1012,2 и 972,1 мм/с. Зная исходный диаметр заготов-

ки, из условия постоянства секундных объемов  

(F0V0 = FnVn) определяем площадь полученного плос-

кого овала 193,1 мм
2
. Вычисляем скорость готовой 

проволоки на выходе из монолитной волоки, которая 

составила 1313,7 мм/с.  

Аналогичным образом были получены данные 

для других экспериментов, которые сведены в таб-

лицу. 

Исходя из полученных данных о скоростях про-

волоки после прокатки и проволоки на выходе из мо-

нолитной волоки, возможно несколько вариантов их 

синхронизации: 

– скорости проволоки после прокатки и на выхо-

де из волоки совпадают с учетом вытяжки в моно-

литной волоке; 

– скорость проволоки на выходе из монолитной 

волоки с учетом вытяжки меньше скорости после 

прокатки, таким образом реализуется режим волоче-

ния с подпором; 

– скорость проволоки на выходе из монолитной 

волоки с учетом вытяжки больше скорости после 

прокатки, в данном случае реализуется режим воло-

чения с натяжением. 

В данной статье рассматривается случай, когда 

скорости проволоки после прокатки и на выходе из 

волоки совпадают с учетом вытяжки в монолитной 

волоке. Для данного варианта было оценено распре-

деление накопленной степени деформации [6]. Мето-

дика оценки заключается в следующем: на исходную 

заготовку в поперечном сечении наносится 360 точек, 

распределѐнных по нескольким концентрическим 

окружностям. Затем строятся графики с развертками 

полученных данных. Отсчет точек начинается с левой 

боковой поверхности, если смотреть, что проволока 

движется на нас. Точка 90 находится сверху заготов-

ки под верхним валком, точка 180 – на правой боко-

вой поверхности и точка 270 – снизу заготовки, над 

нижним валком (рис. 2).  

Из данных на рис. 2 видно, что накопленная сте-

пень деформации при волочении только в монолит-

ной волоке имеет значение от 0,31 на оси проволоки 

до 0,37 на ее поверхности. Применение прокатной 

клети с равными скоростями вращения приводит к 

увеличению накопленной степени деформации в цен-

тре до 0,38 и до величины 0,70 на ее поверхности в 

тех зонах, которые находились при прокатке под вал-

ками. Применение асимметрии приводит к перерас-

пределению значений накопленной степени дефор-

мации. Со стороны верхнего «медленного» валка 

наблюдается ее снижение до значения 0,65, в то вре-

мя как со стороны более «скоростного» валка значе-

ние накопленной степени деформации увеличивается 

до 0,85 и до 0,89 для соотношения скоростей 2 и 5 

соответственно. 

Заключение 

1. В программном комплексе Deform-3d впервые 

выполнено моделирование совмещенного процесса 

«асимметричная прокатка – волочение в монолитных 

волоках». 

2. Сравнительный анализ показал, что степень 

накопленной деформации в проволоке, полученной 

способом «прокатка – волочение», в 1,9 раза выше, 

чем у волоченой проволоки. Применение асиммет-

ричной прокатки повышает это значение до 2,2 и 2,4 

в зависимости от соотношения скоростей валков. 

3. Процесс «прокатка – волочение» является «чув-

ствительным» к изменению соотношения асимметрии 

при прокатке и режимов волочения, что позволяет 

управлять значением накопленной степени деформации 

в проволоке, тем самым обеспечивая получение необхо-

димых ее свойств. 

Таблица. Параметры процесса прокатки с различным соотношением скоростей валков 

T a b l e .  Rolling process parameters for different roll-speed ratios 

Скорость верхнего  

валка, рад/с 

Скорость нижнего  

валка, рад/с 

Скорость переднего конца  

проволоки после прокатки, мм/с 

Рассчитанная скорость переднего конца  

проволоки после монолитной волоки, мм/с 

10 10 1012,2 1313,7 

5 10 522,1 678,6 

2 10 200,4 270,8 
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Рис. 2. Распределение накопленной степени деформации по сечению заготовки после прокатки - волочения  

с соотношением скоростей валков: а – волочение в монолитной волоке с 16,00 на 13,76 мм;  

б – Vниж/Vверх = 1; в – Vниж/Vверх = 2; г – Vниж/Vверх = 5 

Fig. 2. Distribution of accumulated strain over the cross-section of the workpiece after rolling-drawing with different 

roll-speed ratios: a is drawing in a monolithic die from 16.00 to 13.76 mm; б is Vlow/Vtop = 1; в is Vlow/Vtop = 2;  

г is Vlow/Vtop = 5 
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