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ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОННО-ПУЧКОВОГО  

И ИОННО-ПЛАЗМЕННОГО ВОЗДЕЙСТВИЯ НА ПРОЧНОСТНЫЕ 

ХАРАКТЕРИСТИКИ СПЛАВА АА7075 

Панченко И.А., Дробышев В.К., Лабунский Д.Н., Коновалов С.В. 

Сибирский государственный индустриальный университет, Новокузнецк, Россия 

Аннотация. Постановка задачи (актуальность работы). Алюминиевые сплавы марки 7075 обладают высо-

ким отношением прочности к массе, однако традиционные методы производства этих сплавов сопряжены с 

риском образования дефектов (микропоры, трещины) и неоднородности свойств материала, затрудняющих его 

внедрение в существующие технологические циклы металлургического производства. Цель работы. Установ-

ление влияния режимов ионно-плазменного воздействия на механические свойства (микротвердость) на по-

верхности образцов сплава АА7075. Основной целью работы является исследование влияния оптимальных па-

раметров электронно-пучкового и ионно-плазменного воздействия на прочностные характеристики алюминие-

вого сплава 7075. Используемые методы. В качестве оборудования представлены современные объекты ис-

следовательской инфраструктуры с использованием одноименного источника электронов в среде аргона. Для 

механических испытаний использовались установки на усталостную долговечность, одноосное растяжение, а 

также установка для измерения микротвердости. С помощью микротвердомера по Микро-Виккерсу ГОСТ 

9450-76 проведены исследования распределения микротвердости для поиска оптимальных режимов азотирова-

ния 9-ти тестовых образцов сплава АА7075. Новизна. Получение новых результатов об эволюции механиче-

ских свойств материалов, изготовленных проволочно-дуговыми аддитивными технологиями при энергетиче-

ском воздействии на их поверхность. Результат. Были определены значения микротвердости, прочностные 

свойства, на основе которых сделаны выводы об оптимальных режимах проведения азотирования, влияние 

электронно-пучковой, комбинированной обработки на прочность, усталостную долговечность сплава АА7075. 

Практическая значимость. Результаты исследования могут быть использованы для подбора оптимальных 

температурных и временных режимов проведения азотирования состава, а также для разработки новых матери-

алов с улучшенными эксплуатационными характеристиками. 
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STUDYING THE EFFECT OF ELECTRON BEAM AND ION PLASMA 

TREATMENT ON THE STRENGTH CHARACTERISTICS OF AA7075 

ALLOY 

Panchenko I.A., Drobyshev V.K., Labunskiy D.N., Konovalov S.V. 

Siberian State Industrial University, Novokuznetsk, Russia 

Abstract. Problem Statement (Relevance). Aluminum alloys of the 7075 grade have a high strength-to-weight ratio, 

however, traditional methods of production of these alloys are associated with the risk of defects (micropores, cracks) 

and heterogeneity of the material properties, which complicate its implementation in the existing technological cycles of 

metallurgical production. Objectives. The research is aimed at determining the influence of ion-plasma action modes on 

the mechanical properties (microhardness) on the surface of AA7075 alloy samples. The main objective of the work is 

to study the influence of optimal parameters of electron-beam and ion-plasma action on the strength characteristics of 

7075 aluminum alloy. Methods Applied.  Modern research infrastructure facilities are presented as equipment, using 

the similar electron source in an argon environment. Fatigue life, uniaxial tension, special purity units were used for 

mechanical tests. Using a Vickers microhardness tester (State standard GOST 9450-76), the microhardness distribution 

was studied to find the optimal nitriding modes for 9 test samples of AA7075 alloy. Originality. It lies in obtaining new 

results on the evolution of mechanical properties of materials manufactured by wire-arc additive technologies under 

energy impact on their surface. Result. The microhardness values and strength properties were determined, on the basis 

of which conclusions were made on the optimal nitriding modes, the effect of electron-beam and combined treatment on 

the strength and fatigue life of AA7075 alloy. Practical Relevance. The research results can be used to select the opti-

mal temperature and time modes for the composition nitriding, as well as to develop new materials with improved per-

formance characteristics. 
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Введение 

Алюминиевые сплавы марки 7075 обладают вы-

соким отношением прочности к массе и используют-

ся для изготовления несущих конструкций самолѐтов 

(лонжероны, панели фюзеляжа и крыла) [1], а также 

ответственных деталей в автомобильной промыш-

ленности, где требуется сочетание малой плотности с 

высокой прочностью [2]. Основные легирующие эле-

менты (цинк, магний, медь) обеспечивают превос-

ходные механические свойства, однако традицион-

ные методы производства этих сплавов, такие как 

литье или сварка, сопряжены с риском дефектов 

(микропоры, трещины). Современные требования к 

сложным геометриям, локализованному производ-

ству и улучшенным эксплуатационным характери-

стикам стимулируют развитие технологий аддитив-

ного производства (AП) [3] и инновационных мето-

дов комплексной модификации поверхности, таких 

как электронно-пучковая обработка (ЭПО) [4] и азо-

тирование [5]. 

Проволочно-дуговое аддитивное производство 

(WAAM) обеспечивает высокую скорость осаждения 

и заданные размеры изделий, позволяя решить такие 

проблемы, как пористость и образование трещин при 

затвердевании, путем оптимизации технологического 

процесса [6-8].  Несмотря на выдающиеся механиче-

ские характеристики в объѐме, термическая обработ-

ка (T6/T651) не позволяет достичь необходимого 

уровня твѐрдости и износостойкости поверхности, 

что ограничивает применение AA7075 в условиях 

интенсивного трения и абразивного износа [9, 10]. 

Современные исследования активно изучают воз-

можность нитридирования алюминиевых сплавов как 

способа поверхностного упрочнения и модификации 

[11]. В процессе азотирования на поверхности обра-

зуются соединения Al–N (нитрид алюминия), кото-

рые обладают высокой твѐрдостью и стойкостью к 

износу [12]. В сплаве AA7075 плазменное азотирова-

ние формирует тонкий (порядка 5–10 мкм) «белый 

слой» с последующим увеличением твердости с ~76 

до ~118 Vickers и толщиной нитридного слоя около 6 

мкм [13]. Аналогично в работе [14] сообщили, что 

плазменное азотирование улучшает износостойкость 

и усталостную выносливость сплава AA7075, а также 
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заметно снижает скорость электрохимической корро-

зии по сравнению с необработанным материалом 

[15].   

Азотирование алюминиевых сплавов также мо-

жет привести к ряду негативных последствий. Эти 

неблагоприятные воздействия в первую очередь свя-

заны с изменениями микроструктуры и механических 

свойств, которые могут ухудшить общие характери-

стики сплава. В результате азотирования может обра-

зоваться толстая оксидная пленка, которая может 

повлиять на свойства поверхности сплава и привести 

к повышению шероховатости поверхности и потен-

циальной концентрации напряжений [16]. Механиче-

ские характеристики азотированных алюминиевых 

сплавов могут ухудшаться из-за пористости и дефек-

тов, образующихся в процессе азотирования [17]. Хо-

тя азотирование обычно повышает коррозионную 

стойкость, оно также может привести к локальным 

проблемам коррозии, особенно в солевых средах, где 

азотированный слой может не обеспечивать равно-

мерной защиты [18]. 

Для минимизации дефектов, связанных с образо-

ванием пор в поверхностном слое при использовании 

данной методики, необходима постобработка. Одним 

из эффективных решений для снятия концентрации 

напряжений является модификация структуры мате-

риала посредством электронно-пучкового воздей-

ствия, которое позволяет повысить плотность и одно-

родность поверхностных слоѐв [19]. Несмотря на эф-

фективность, оба метода требуют оптимизации ре-

жимов обработки, чтобы минимизировать потерю 

легирующих элементов (Mg, Zn) и сохранить проч-

ностное состояние сплава AA7075, что является акту-

альной задачей современной поверхностной инжене-

рии алюминиевых сплавов.  

Материалы и методы исследования 

В качестве материала исследований использован 

алюминиевый сплав марки 7075. Образцы из AA7075 

изготавливали с использованием 3D-принтера 

Anycubic Chiron, работающего по технологии моде-

лирования методом послойного наплавления (FDM). 

В табл. 1 представлен химический состав наплавоч-

ной алюминиевой проволоки и полученного наплав-

ленного слоя АА7075. 

Образцы на растяжение имели форму пропорцио-

нальных лопаток и следующие размеры: толщина 3 

мм; ширина 14 мм; рабочая длина 25 мм. Образцы 

для исследований усталостной долговечности имели 

форму параллелепипеда размерами 12×4×130 мм с 

двумя концентраторами напряжений в виде полукру-

га радиусом 20 мм. Для качественной оценки уста-

лостных характеристик образцов, изготовленных по 

ГОСТ 25.502-79, их подвергали механической шли-

фовке наждачной бумагой с уменьшением дисперс-

ности абразивных частиц, поскольку качество подго-

товки поверхности изделий влияет на показатели со-

противления усталости.  

Таблица 1. Химический состав алюминиевой  

проволоки и наплавленного слоя, вес. % 

T a b l e  1 .  Chemical composition of aluminum wire and 

deposited layer, wt.% 

Материал 

исследо-

вания 

Al Si Fe Mn Cu Mg Cr Zn Ti 

Проволока 

АА7075 

Осталь-

ное 
0,4 0,1 0,3 1,6 2,51 0,18 6,02 0,02 

Наплавлен

ный слой 

Осталь-

ное 
0,1 0,1 0,6 0,8 2,8 0,2 4,1 0,1 

 

Электронно-пучковая обработка (ЭПО) образцов 

сплава АА7075 осуществлялась на установке 

«СОЛО» ИСЭ СО РАН, входящей в перечень объек-

тов современной исследовательской инфраструктуры 

Российской Федерации, с использованием одноимен-

ного источника электронов в среде аргона особой 

чистоты (99,999%) при давлении 31 мПа. 

Модифицирование поверхности методом азоти-

рования осуществлялось в дуговом разряде при по-

мощи плазменного источника с накаленным катодом 

при температуре 600°С в течение 1, 3, 5 ч (рис. 1) в 

газовой смеси 50% аргона и 50% азота.  

Замеры микротвердости исследуемых образцов 

проводились с использованием микротвердомера 

HVS-1000 по Микро-Виккерсу ГОСТ 9450-76 путѐм 

вдавливания алмазной пирамидки. Испытательная 

нагрузка – 20 г, длительность нагрузки – 10 с. 

Механические испытания алюминиевого сплава 

марки 7075, поверхностно модифицированного элек-

тронным пучком, осуществляли путем одноосного 

растяжения образцов на испытательной машине 

«SUBRAMAX PMBC-50» с постоянной скоростью 0,5 

мм/мин.  

Исследования на усталостную долговечность вы-

полнялись на специализированном оборудовании, 

работающем по схеме асимметричного консольного 

изгиба. В ходе экспериментов регистрировалось ко-

личество циклов, предшествующих разрушению ма-

териала. Все испытания осуществлялись при комнат-

ной температуре (~293 К), а частота нагружений об-

разцов изгибом составляла 2,3 Гц. Для достижения 

минимального порога в 10⁵ циклов до появления 

трещин экспериментально подбирались пиковые зна-

чения напряжения и амплитуды циклических воздей-

ствий. 
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Рис. 1. Фотография внешнего вида образцов после электронно-пучкового и ионно-плазменного воздействия 

при температуре 600°С и времени азотирования 1, 3 и 5 ч: 

а, б, в – образцы для испытаний на усталость (1-я партия); г, д, е – образцы для механических испытаний 

(2-я партия) 

Fig. 1. An image of the samples after electron beam treatment and ion plasma exposure at a temperature of 600°C  

and a nitriding time of 1, 3 and 5 hours: а, б, в are fatigue test samples (1st batch); г, д, е  are samples  

for mechanical tests (2nd batch) 

Полученные результаты и их обсуждение 

Для поиска оптимальных режимов азотирования 9 

тестовых образцов сплава АА7075 без концентраторов 

напряжений с размерами 15×15×5 мм
3
 были подвергну-

ты ионно-плазменной обработке (азотированию). Обра-

ботка производилась методом ионно-пучкового азоти-

рования с помощью уникальной системы для бессеточ-

ного формирования низкоэнергетического ионного пуч-

ка. Принцип работы системы заключается в том, что в 

ней инициируется разряд с внешней инжекцией элек-

тронов, плазма которого является источником ионов для 

пучка, инжектируемого в рабочую вакуумную камеру, 

заполненную плазмой генератора «ПИНК», где распо-

лагаются обрабатываемые образцы. Такой принцип ра-

боты обеспечивает компенсацию заряда ионов на обра-

батываемой поверхности и, соответственно, позволяет 

облучать образцы, в том числе диэлектрические либо с 

диэлектрическим покрытием, находящиеся под «плава-

ющим» потенциалом без риска образования на их по-

верхности микродуг.  

В табл. 2 представлены результаты измерения 

микротвердости (при нагрузке на индентор 20 г) на 

поверхности образцов сплава АА7075 без концентра-

торов напряжений с размерами 15×15×5 мм
3
, под-

вергнутых азотированию при следующих параметрах: 

температура 450, 520, 600°С; времени азотирования – 

1, 3, 5 ч.  

Таблица 2. Результаты измерения микротвердости  

на поверхности образцов сплава АА7075 

T a b l e  2 .  Results of measuring microhardness on the 

surface of samples of AA7075 alloy 

Режим азотирования, температура, оС, 

и длительность, ч 

Микротвердость, 

ГПа 

450_1 0,59 

450_3 0,69 

450_5 0,59 

520_1 0,60 

520_3 0,58 

520_5 0,57 

600_1 0,62 

600_3 1,0 

600_5 0,53 

Исходное состояние 0,96 

 

а б в 

г д е 
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Изменение микротвердости алюминиевого сплава 

7075 после азотирования обусловлено сложным взаи-

модействием процессов упрочнения за счѐт образова-

ния нитридов и разупрочнения из-за структурных из-

менений в сплаве. При азотировании на поверхности 

формируются нитриды алюминия (AlN) и, возможно, 

других элементов сплава (Zn, Mg, Cu). Эти соединения 

повышают твѐрдость, особенно при оптимальных ре-

жимах (600°C, 3 ч), где достигается максимальное зна-

чение 1,0 ГПа. 450°C является умеренной температу-

рой проведения азотирования, замедляющей диффу-

зию азота. Снижение микротвердости в образцах, об-

работанных в течение 5 ч, может быть вызвано нача-

лом роста зѐрен или неоднородностью слоя. При тем-

пературе азотирования 520°C возникает постепенное 

снижение твѐрдости с увеличением времени от 0,60 до 

0,57 ГПа, что указывает на возможное растворение фаз 

или перестаривание сплава, что снижает его базовую 

твѐрдость. Температура обработки 600°C являлась 

наиболее оптимальной, судя по микротвердости об-

разцов, подверженных азотированию в течение 3 ч (1,0 

ГПа), что объясняется интенсивным образованием 

нитридов. Однако при времени выдержки азотирова-

ния до 5 ч наблюдалось резкое падение микротвердо-

сти до 0,53 ГПа, что связано с деградацией структуры: 

ростом зѐрен или растрескиванием нитридного слоя 

или перестариванием сплава. 

В исходном состоянии (без обработки) предел 

прочности составил всего ~100,9 МПа (рис. 2), а 

усталостная выносливость – ~234 748 циклов. При-

чинами стали высокая пористость и наличие внут-

ренних дефектов, которые служат концентраторами 

напряжений, ускоряющими зарождение трещин. По-

сле ЭПО предел прочности вырос на 97,5% (до 199,3 

МПа), а усталостная выносливость увеличилась на 

11% (~260 890 циклов). Это связано с локальным пе-

реплавлением поверхностного слоя, устранением 

микропор и релаксацией остаточных напряжений.  

Комбинированная обработка (КО), включающая в 

себя ЭПО и ионно-плазменное воздействие в течение 1 

ч, привела к ухудшению свойств: предел прочности 

упал до 69 МПа (-65% от ЭПО), а усталостная вынос-

ливость – до ~141 668 циклов (-45%). Короткое время 

обработки вызвало перегрев материала, нестабильное 

окисление поверхности (рис. 3) и образование микро-

трещин (рис. 3, а). Эти дефекты превратили поверх-

ность в хрупкую зону, ускоряющую разрушение. 

 

Рис. 2. Количество циклов до усталостного разрушения и предел прочности алюминиевого сплава 7075,  

изготовленного аддитивным производством, облученного электронно-пучковой обработкой,  

комбинированной обработкой на протяжении 1, 3, 5 ч 

Fig. 2. Number of cycles to fatigue failure and ultimate strength of 7075 aluminum alloy produced by additive  

manufacturing, irradiated by electron beam treatment, combined processing for 1, 3, 5 hours 
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Рис. 3. Распределение химических элементов сплава АА7075 после комбинированной обработки  

на протяжении 5 ч, где красными стрелками указаны микротрещины: а – электронно-микроскопическое 

изображение зоны излома; б – Al; в – Mg; г – Cu; д – O; е – Zn; ж – Mn; з – Fe  

Fig. 3. Distribution of chemical elements of the AA7075 alloy after combined processing for 5 hours, where red arrows 

indicate microcracks: a is an electron microscopic image of the fracture zone, б is Al, в is Mg, г is Cu, д is O,  

е is Zn, ж is Mn, з is Fe 
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Увеличение времени ионно-плазменной обработ-

ки до 3 ч (ЭПО + КО 3 ч) частично компенсировало 

негативные эффекты: прочность выросла до 82 МПа 

(+19%), а усталостная выносливость — до ~201 717 

циклов (+42%). Более длительное воздействие позво-

лило стабилизировать структуру, снизить концентра-

цию дефектов и сформировать упрочнѐнный слой. 

Однако свойства оставались ниже, чем после ЭПО, 

из-за недостаточной глубины модифицированной 

поверхности. После 5-часовой ионно-плазменной 

обработки (ЭПО + КО 5 ч) предел прочности достиг 

133 МПа (+62% от КО 1 ч), а усталостная выносли-

вость ~384 941 циклов (+172%), превысив даже пока-

затели после ЭПО. Тем самым комбинированная об-

работка, включающая ЭПО (устранение внутренних 

дефектов) и азотирование (оптимизация поверхност-

ных свойств), позволила преодолеть ограничения ад-

дитивного производства. 

Заключение 

Микротвердость и прочность коррелируют с плот-

ностью материала: электронно-пучковая обработка и 

длительная комбинированная обработка уменьшают 

пористость, повышая оба параметра. Малая продолжи-

тельность электронно-пучковой и ионно-плазменной 

обработки ухудшает микротвердость из-за термиче-

ских дефектов. Усталостная выносливость зависит от 

поверхностных свойств: внутренние напряжения (по-

сле КО 5 ч) и отсутствие дефектов увеличивают сопро-

тивление зарождению трещин. Хрупкие оксиды (после 

КО 1 ч) ускоряют разрушение.  

Оптимальными параметрами обработки являются 

ЭПО + КО 5 ч, где сочетается устранение внутренних 

дефектов после ЭПО и улучшение поверхностных 

свойств после ионно-плазменной обработки. Таким 

образом, комбинированная постобработка аддитивно 

полученного сплава 7075 позволяет не только ком-

пенсировать технологические недостатки изготовле-

ния сплавов, но и целенаправленно модифицировать 

структуру материала для достижения требуемых ме-

ханических свойств. 
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