ТЕХНОЛОГИИ И СВОЙСТВА ПОКРЫТИЙ

УДК 621.771

Н.И. Пилюгина, Т.С. Михайлова, Л.В. Мозговая

КОНТРОЛЬ КАЧЕСТВА ПРОКАТА С ПОЛИМЕРНЫМ ПОКРЫТИЕМ В ОАО «ММК»

В июле 2004 года в ОАО «ММК» введен в эксплуатацию агрегат полимерных покрытий (АПП), начат выпуск стального проката с полимерным покрытием. Для контроля качества готовой металлопродукции и входного контроля жидких полимерных материалов организован контрольный участок ЦЛК.

Агрегат для нанесения полимерных покрытий на рулонный прокат валковым способом (методом «Coil Coating») был поставлен известной европейской фирмой «Фест-Альпине» (Австрия). АПП предназначен для производства проката с любым видом покрытий — полиэфирных, полиуретановых, полиамидных, поливинилиденфторидных (PVDF), поливинилхлоридных (ПВХ-пластизолей), эпоксидных, эпоксиполиэфирных.

Повышенный спрос на прокат с полимерным покрытием на внешнем и внутреннем рынках диктует необходимость достижения показателей качества, не уступающих требованиям международных стандартов: высокую адгезию, высокие показатели эластичности и способность к деформации для последующей переработки, хорошие защитные свойства и атмосферостойкость, высокую прочность к царапанию и истиранию, сохранение защитных и декоративных свойств в течение длительного времени и целый ряд специальных требований в зависимости от назначения и условий эксплуатации готовых изделий.

Изготовление высококачественного полимерного покрытия на стальном прокате зависит от качества поверхности исходного проката, качества материалов для химической подготовки поверхности перед окрашиванием, а также качества полимерных материалов.

Сегодня поставщиками полимерных материалов являются три ведущие европейские компании: «Басф» (Германия), «Акзо Нобель» и «Беккерс» (Швеция).

Для производства проката с полимерным покрытием применяют только те материалы, которые по результатам входного контроля соответствуют требованиям нормативной документации. Основными материалами в ОАО «ММК» для изготовления защитно-декоративного покрытия проката являются бесхроматный универсальный грунт компании «Басф», лицевые полиэфирные эмали более 20 цветов по системе RAL различных фирм и эмали обратной стороны на эпоксидной основе. Прокат с полиэфирным покрытием используется для изготовления строительных конструкций (черепицы, профилированных панелей, наружной и внутренней облицовок зданий и т.д.).

Для других областей применения может изготавливаться прокат с иными характеристиками полимерного покрытия, определяемыми требованиями к готовым изделиям из данного проката.

В табл. 1 представлены декоративные и физико-механические характеристики проката с полимерным покрытием, рекомендуемого для производства строительных конструкций.

Таблица 1 Декоративные и физико-механические свойства полимерных покрытий

Показатель	Метод испытаний	Уровень показателей качества		
Толщина (грунт/эмаль), мкм	DIN EN 13523-1	5–7/15–20		
Отклонение по цвету, ΔE	DIN EN 13523-3	≤1		
Блеск, %	DIN EN 13523-2	30–40		
Прочность после вытяжки, мм	DIN EN 13523-6	Не менее 6		
Прочность при обратном ударе, Дж	DIN EN 13523-5	Не менее 10		
Эластичность при изгибе (Т-изгиб), Т	DIN EN 13523-7	Не более 1,5		
Твердость по карандашу	DIN EN 13523-4	F-H		
Стойкость к истиранию растворителем метилэтил- кетоном (МЭК), число двойных проходов	DIN EN 13523-11	Не менее 100		
Адгезия, баллы	DIN EN 13523-7	Не более 0		

Декоративные свойства проката с полимерным покрытием оценивают по таким показателям, как блеск и цветовое различие.

Блеск измеряется фотоблескомером с геометрией измерения 20, 60 и 85°. Определение блеска заключается в измерении тока, возбуждаемого в фотоприемнике прибора под действием светового потока, отраженного от поверхности испытуемой пробы.

Для объективного определения цветового различия между эталонным и испытуемым образцами (кроме цвета «металлик») используется инструментальный метод контроля. В качестве эталонных образцов применялись образцы эталонного каталога RAL-840 НR или металлические образцы фирм-поставщиков полимерных материалов. Затем был сформирован каталог эталонных металлических образцов цвета полимерного покрытия ОАО «ММК» (каталог эталонов цвета ОАО «ММК»), который используется для контроля показателя «цветовое различие» жидких полимерных материалов и готовой продукции с полимерным покрытием, а также для согласования цвета полимерного покрытия с потребителем.

В качестве цветоизмерительного прибора применяется прибор с направленной геометрией измерения 45/0, исключающий блеск покрытия и оснащенный двумя стандартными источниками света С (непрямой солнечный свет, 6774 К) и D65 (дневной свет, 6500 К). Прибор позволяет оценить цветовое различие с помощью модели цветового пространства СІЕLAB. Это трехмерная система координат, состоящая из трех осей: черно-белой оси яркости (L), хроматической зелено-красной

оси (а) и хроматической желго-синей оси (b). По разности значений отдельных координат цвета двух сравниваемых объектов вычисляют величину цветового различия ΔE [1].

Из **табл. 1** видно, что цветовое различие проката с полимерным покрытием должно быть не более 1, это означает, что при визуальном сравнении разница в цвете минимальна или отсутствует.

При проведении лабораторных исследований отмечено, что на качество полимерного покрытия значительно влияют толщина и условия формирования покрытия (продолжительность и температура сушки).

В табл. 2 представлены результаты лабораторных исследований.

Из табл. 2 следует, что при увеличении времени отверждения покрытия, а следовательно, увеличении ПТМ, снижается блеск покрытия, увеличивается цветовое различие между образцами. При значении ПТМ ниже рекомендуемого покрытие не выдерживает воздействия растворителя МЭК (метилэтилкетона) и имеет низкую твердость по карандашу. При значении ПТМ выше рекомендуемого ухудшаются такие показатели, как прочность после вытяжки и прочность при обратном ударе, Т-изгиб, адгезия. Чрезмерно высокая ПТМ и время выдержки в печи ведут к разложению пигмента и деструкции пленкообразующего, что влечет за собой изменение цвета и ухудшение механических свойств.

Так как в процессе переработки окрашенный металл испытывает значительные механические воздействия (вытяжку, изгиб, удар), то контроль качества прочностных и деформационных

Таблица 2 Зависимость декоративных и физико-механических свойств проката с полимерным покрытием RAL 6005 (зеленый мох) от пиковой температуры металла (ПТМ) и времени сушки в лабораторной печи

Nº π/π	Показатель	Значение по НД	Результат испытаний						
1	Толщина металла, мм		0.43						
2	Температура в лабораторной печи, °С		345						
3	Пиковая температура металла, °C	235–245	199	220	232	250	> 260	> 260	> 260
4	Время сушки в лабораторной печи, с		15	20	25	30	35	40	45
5	Толщина покрытия (грунт/эмаль), мкм	5–7/19–21	5/19	5/19	5/19	6/18	6/18	6/18	6/18
6	Блеск (глянец), %	30–40	43	36	34	30	18	18	12
7	Отклонение по цвету, ΔЕ	≤1	0,6	0,4	0,4	0,9	5,6	5,6	11,2
8	Прочность после вытяжки, мм	6	8	8	8	8	7	6	5
9	Прочность при обратном ударе, Дж	≥ 10	20	20	20	20	15	15	< 1
10	Эластичность при изгибе (Т-изгиб), Т	1,5	1	1	1	1	1,5	1,5	3
11	Твердость по карандашу	Н	< HB	2H	5H	5H	5H	4H	3H
12	Стойкость к истиранию растворителем метилэтилкетоном (МЭК), число двойных проходов	> 100	80	100	110	110	110	110	110
13	Адгезия, баллы	0	0	0	0	0	0	0	1,5

свойств особенно важен. По результатам этих испытаний судят о способности проката с полимерным покрытием к формованию.

Прочность после вытяжки определяют по минимальному значению глубины вытяжки, при которой не происходят механические повреждения (растрескивания и/или отслаивания) покрытия [2].

При определении прочности при ударе оценивают высоту, падая с которой, груз определенной массы не вызывает видимых механических повреждений (растрескиваний и/или отслаиваний) покрытия [3].

Эластичность полимерного покрытия при изгибе (Т-изгиб) определяют минимальным количеством толщин металла, на которое изгибается лист с покрытием [4].

Твердость покрытия определяют при помощи прибора с набором карандашей «КОН-I-NOOR». Результаты выражают номером наиболее твердого карандаша, который не вызывает видимые повреждения покрытия [5].

Важнейшим свойством полимерных покрытий является адгезия, величина которой и стабильность существенно влияют на долговечность и защитную способность в условиях эксплуатации. Повышение ПТМ и времени сушки благоприятствуют адгезии, однако она ухудшается, если тепловое воздействие приводит к деструкции материала пленки. Поэтому для каждого вида покрытия необходимо выдерживать оптимальные режимы пленкообразования.

Так как свойства покрытия зависят от толщины, при всех испытаниях предусмотрено ее определение. В лаборатории толщина покрытия определяется разрушающим методом. Данный метод позволяет определить общую толщину и толщину каждого слоя системы покрытия (грунта/эмали) [6].

В табл. 3 представлены лабораторные исследования зависимости декоративных свойств проката с полимерным покрытием от толщины покрытия.

Данные таблицы показывают, что чем ближе толщина покрытия к нормативным требованиям, тем меньше цветовое различие с эталонным образцом. С увеличением толщины покрытия возрастает блеск.

Таблица 3
Зависимость декоративных свойств проката
с полимерным покрытием от толщины покрытия

Цвет эмали	Толщина по	крытия, мкм	Блеск,	Отклонение
по RAL	грунт/эмаль	грунт/эмаль	%	по цвету,
110 TVAL	трунт/омаль	по НД	70	ΔE_{840HR}
9003	5/15	5-7/19-21	32	1,2
(сигнально-	7/17		38	1,3
белый)	5/18		40	0,9
	6/19		40	0,9
	5/20		40	0,8
	5/22		40	0,8
1014	5/15	5-7/19-21	36	1,0
(слоновая	5/15		37	0,9
кость)	5/16		38	0,4
	5/17		38	0,4
	5/19		39	0,3
	5/22		39	0,3
3011	5/16	5-7/19-21	37	0,8
(коричнево-	5/17		37	0,6
красный)	5/18		40	0,4
	5/19		40	0,3
	5/22		40	0,3
6005	5/18	5–7/19–21	34	0,7
(зеленый	5/20		35	0,5
MOX)	5/22		37	0,8
	5/24		38	0,8

Наряду с полиэфирными материалами успешно прошли лабораторные и опытнопромышленные испытания полиуретановые, поливинилиденфтордные и ПВХ-пластизолевые материалы. Эти материалы отличаются более высокой коррозионной стойкостью и долговечностью декоративных свойств.

Испытания проката с полимерным покрытием и жидких полимерных материалов включены в область аккредитации испытательной лаборатории ОАО «ММК». Техническая компетентность лаборатории подтверждена аттестатом аккредитации Федерального государственного унитарного предприятия "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИН-МАШ) от 30 января 2006 г.

Библиографический список

- 1. И-ЦЛК-3-2307-2006. Определение отклонения по цвету полимерного покрытия. 2006. С. 6-9.
- 2. И-ЦЛК-3-2311-2005. Определение адгезионной прочности полимерного покрытия после вытяжки. 2005. С. 3-4.
- 3. DIN EN 13523-5. Металлическая полоса с покрытием. Методы испытания. Ч. 5. Сопротивление быстрой деформации (испытание на удар). 2001. С. 4–5.
- 4. DIN EN 13523-7. Металлическая полоса с покрытием. Методы испытания. Ч. 7. Сопротивление растрескиванию при изгибе (испытание на Т-изгиб). 2001. С. 6–7.
- 5. DIN EN 13523-4. Металлическая полоса с покрытием. Методы испытания. Ч. 4.Твердость по карандашу. 2001. С. 4–6.
- И-ЦЛК-3-2313-2006. Определение толщины полимерного покрытия. 2006. С. 3–4.