#### ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ

УДК 621.771

А.В. Шаргунов, С.Н. Горшков, С.В. Денисов, А.В. Титов, О.В. Казаков, В.Г. Костюнин

# ИЗМЕНЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ПРОКАТА В ПРОЦЕССЕ ПРАВКИ В АПР-2 ЛПЦ-4 ОАО «ММК»

Агрегаты поперечной резки (АПР) листового проката относятся к вспомогательному (адъюстажному) оборудованию, на которых производят правку и порезку рулонной широкополосной стали. Во время правки полосы в роликоправильных машинах происходят хотя и незначительные, но пластические деформации, которые приводят к изменению конечных механических свойства проката.

19 сентября 2005 г. был сдан в эксплуатацию агрегат поперечной резки № 2 фирмы «Fimi» в ЛПЦ-4 ОАО «ММК», в состав которого входят две листоправильные машины. Первая листоправильная машина имеет 15 рабочих роликов диаметром 80 мм, вторая 17 рабочих роликов диаметром 55 мм. Обе машины оснащены опорными роликами.

Для оценки влияния правки в ЛПМ на механические свойства горячекатаного металла исследовали следующие группы горячекатаного проката: сталь марки Ст3сп обыкновенного качества, конструкционная сталь марки 20(ЮА) обыкновенного качества, низколегированная конструкционная сталь марки 09Г2С, низколегированная конст-

Таблица 1 ФМС проката из стали марки Ст3сп в зависимости от величины перекрытия роликов ЛПМ

| Партия   | Тол-<br>щина | Перекрытие роликов, мм |       | Изменение ФМС проката |         |            |  |
|----------|--------------|------------------------|-------|-----------------------|---------|------------|--|
|          | листа,<br>мм | ЛПМ-1                  | ЛПМ-2 | σ₁, МПа               | σв, МПа | δ4, %      |  |
| 16796    | 2            | 7,4                    | 0,6   | +35                   | +20     | -3,0       |  |
| 7102     | 2            | 7,4                    | 0,6   | +42,5                 | +10     | -3,5       |  |
| 7513     | 2            | 7                      | 1.5   | +40                   | +10     | -3,5       |  |
| 3933     | 3            | 2,6                    | 1,1   | +17,5                 | +5      | -1         |  |
| 7099     | 3            | 1,1                    | 1,4   | +12,5                 | +7,5    | <b>-</b> 2 |  |
| 35907    | 3            | 3                      | _     | +5                    | +2,5    | -6,5       |  |
| 27986    | 3            | 3,2                    | -     | +7                    | +21     | -7,8       |  |
| 21376    | 3            | 1,8                    | _     | +7,5                  | +7,5    | -3,5       |  |
| 32233    | 4            | 0                      | _     | +2,5                  | +12,5   | -2         |  |
| 13415    | 5            | 0,3                    | _     | +20                   | +10     | -1         |  |
| 108158-7 | 6            | 2,2                    | _     | +2,5                  | +12,5   | нет        |  |

рукционная сталь марки 10ХСНД. При этом свойства определяли до и после правки полосы в ЛПМ. Результаты исследований представлены в табл. 1–4 и на рис. 1–4.

Значительная разница в перекрытии роликов на одной и той же толщине обусловлена разной

Таблица 2 ФМС проката из стали марки 20 (ЮА) в зависимости от величины перекрытия роликов

| Партия | Тол-<br>щина | -     | рытие | Изме  | Изменение ФМС проката |       |     |  |
|--------|--------------|-------|-------|-------|-----------------------|-------|-----|--|
|        | листа,       | л⊓М-1 | лпм-2 | σ,    | σв,                   | δ4, % | HB, |  |
|        | MM           |       |       | МПа   | МПа                   |       | ед. |  |
| 18695  | 3            | -3,5  | -     | н.д.  | +5                    | -1,0  | нет |  |
| 18829  | 3            | -3,1  | -     | +10   | +17                   | -     | нет |  |
| 27785  | 4            | -0,8  | -     | +7,5  | +16                   | -3,0  | нет |  |
| 37925  | 4            | -0,7  | -     | +18,0 | +3,5                  | -2,0  | нет |  |
| 3586   | 6            | +3,6  | _     | нет   | +7,5                  | -5,5  | нет |  |

Таблица 3

### ФМС проката из стали марки 09Г2С в зависимости от величины перекрытия роликов

|        | Толщина | Перекры   | ытие ро- | Изменение ФМС проката       |                      |                |  |
|--------|---------|-----------|----------|-----------------------------|----------------------|----------------|--|
| Партия | листа,  | ликов, мм |          | Planetichine Pivio ripokara |                      |                |  |
|        | MM      | ЛПМ-1     | ЛПМ-2    | σ₁, МПа                     | σ <sub>в</sub> , ΜΠα | $\delta_4$ , % |  |
| 28577  | 4       | -0,9      | _        | +12,0                       | +11,5                | -1,0           |  |
| 16089  | 4       | -         | -0,7     | +17,0                       | +2,5                 | -1,0           |  |
| 16119  | 4       | _         | -1,6     | +10,0                       | +20,0                | -3,0           |  |
| 37925  | 5       | +0,4      | _        | +17,0                       | +5,0                 | -2,0           |  |

Таблица 4

## ФМС проката из стали марки 10ХСНД в зависимости от величины перекрытия роликов

| Партия   | Тол-         | Перекрытие ро- |       | Изменение ФМС           |                         |       |  |
|----------|--------------|----------------|-------|-------------------------|-------------------------|-------|--|
|          | щина         | ликов, мм      |       | проката                 |                         |       |  |
|          | листа,<br>мм | ЛПМ-1          | ЛПМ-2 | σ <sub>τ</sub> ,<br>ΜΠа | σ <sub>в</sub> ,<br>МПа | δ4, % |  |
| 206575-5 |              |                | 0.0   | +5.0                    | +2.5                    | 2.0   |  |
| 200575-5 | 4            | _              | -0,9  | +5,0                    | +2,5                    | -2,0  |  |
| 212865-7 | 4            | -0,7           | ı     | +27,5                   | +10,0                   | -2,0  |  |

Вестник МГТУ им. Г. И. Носова. 2007. № 2.

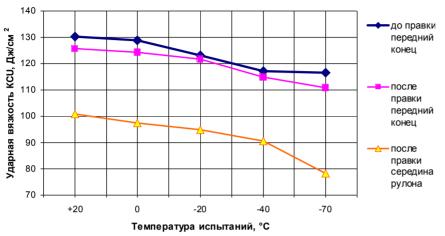



Рис. 1. Изменение ударной вязкости КСU на прокате из стали марки 09Г2С при различных температурах испытания

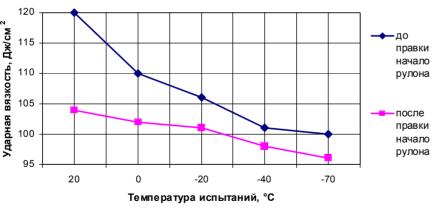



Рис. 3. Изменение ударной вязкости КСU на прокате из стали марки 10ХСНД при различных температурах испытаний

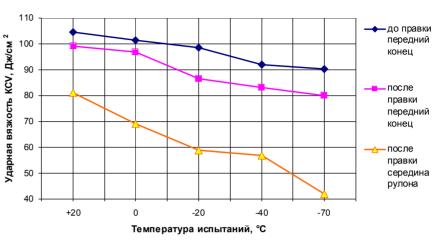



Рис. 2. Изменение ударной вязкости КСV на прокате из стали марки 09Г2С при различных температурах испытания

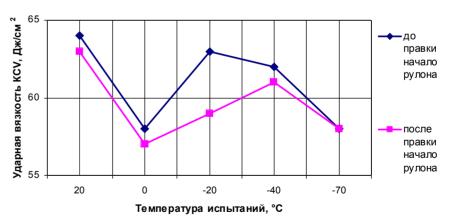



Рис. 4. Изменение ударной вязкости КСV на прокате из стали марки 10XCHД при различных температурах испытаний

исходной неплоскостностью рулонов. Повышенная исходная неплоскостность требует применения больших перекрытий роликов в ЛПМ, а также применения правки в ЛПМ с меньшим диаметром роликов (ЛПМ-2).

Одновременная правка листов толщиной 2 мм в двух ЛПМ (партия 16796, 7102 и 7513) приводит к значительному увеличению  $\sigma$ т от 35 до 42  $H/mm^2$  и  $\sigma$ в от 10 до 20  $H/mm^2$ , при этом удлинение снижается на 3,5%.

Правка проката в двух ЛПМ толщиной 3 мм приводит к большему увеличению от относительно режима правки в ЛПМ-1 (партия 3933, 7099), что обусловлено дополнительной правкой в ЛПМ-2 с меньшим диаметром роликов. При этом следует добавить, что на толщине 3 мм наблюдается различное по величине увеличение ов от 2,5 до 21 Н/мм что является следствием применения больших перекрытий до 3,2 мм в ЛПМ-1 (партия 27986).

Анализ механических свойств показывает, что правка проката из стали марки 20(ЮА) изменяет механические свойства следующим образом: прочностные характеристики проката увеличиваются (предел текучести до 18 МПа, предел прочности до 17 МПа) пластические характеристики снижаются (относительное удлинение до 6%), при этом твердость проката не меняется.

Анализ механических свойств показывает, что правка проката изменяет механические свойства следующим образом. Прочностные характеристики проката увеличиваются (предел текуче-

сти до 17 МПа, предел прочности до 20 МПа) пластические характеристики снижаются (относительное удлинение до 3%).

На **рис.** 1 и 2 представлены результаты изменения ударной вязкости КСU и КСV до и после применения правки в ЛПМ проката из стали марки 09Г2С.

Анализ полученных результатов показал, что правка листов приводит к снижению значений ударной вязкости до 11,5 Дж/см<sup>2</sup>. Уровень значений ударной вязкости после проведения правки для середины рулона меньше, от 20 до 40 Дж/см<sup>2</sup>.

Анализ механических свойств показывает, что правка проката изменяет механические свойства следующим образом: прочностные характеристики проката увеличиваются (предел текучести на 5–27,5 МПа, предел прочности на 2,5–10 МПа) пластические характеристики снижаются (относительное удлинение на 2%).

На рис. 3 и 4 представлены результаты изменения ударной вязкости КСU и КСV до и после применения правки в ЛПМ на прокате из стали марки 10ХСНД.

Таким образом, при производстве широкополосной горячекатаной стали, поставляемой в листах, должно учитываться изменение ФМС в процессе правки. Полученные данные могут использоваться для принятия оперативных корректирующих действий при текущем производстве листового проката.

УДК 621.771

В.М. Салганик, Т.В. Коляда, А.И. Брусьянина

#### АНАЛИЗ ФАКТОРОВ, ВЛИЯЮЩИХ НА ВОЗНИКНОВЕНИЕ ДЕФЕКТОВ ПОВЕРХНОСТИ ХОЛОДНОКАТАНОГО МЕТАЛЛА

Холоднокатаный листовой прокат относится к высококачественной металлопродукции. Ее потребители, особенно автозаводы, выдвигают все более жесткие требования к такому металлу, в частности к качеству его поверхности. Для их удовлетворения возникает необходимость в разработке и применении новых научно обоснованных технологических подходов и решений.

В исследованиях процесса холодной прокатки значительное место уделяется изучению влияния различных технологических факторов на появление дефектов поверхности металла. В частности, в условиях ЛПЦ-5 ОАО «ММК» поставили задачу выявления параметров, оказывающих ключевое воздействие на образование дефекта «излом». Ак-

туальность работы обусловлена достаточно частым появлением этого трудноустранимого дефекта поверхности.

«Излом» проявляется в виде тёмных шероховатых полос и разветвленных линий, расположенных преимущественно под углом 45° к направлению прокатки или дрессировки, которые образуются под действием локальных напряжений, превышающих предел текучести металла (рис. 1) [1].

Данный дефект появляется на отдельных участках полосы вследствие пластической деформации поверхностных слоев и представляет собой линии, отличающиеся от материала полосы по цвету, а зачастую и по толщине [2].

Вестник МГТУ им. Г. И. Носова. 2007. № 2.