ISSN (print) 1995-2732
ISSN (online) 2412-9003

 

download PDF

Abstract

Problem Statement (Relevance): This article examines the possibility of creating an environmentally friendly, efficient and cost-effective high-performance integrated circuit for the processing of lead-containing industrial products and wastes (in particular, silver-zinc dross) resulting in the commercial production of single-element products. Among the practicable techniques for the recovery of silver-zinc dross, we distiguish vacuum distillation, which is considered one of the most effective and environmentally friendly methods for the separation, purification, processing and refining of various metals. To analyze the behavior of the multicomponent alloy during processing and in order to pre-select the system temperature and pressure and evaluate the separation efficiency in a vacuum distillation process, the following phase diagrams are applied: temperature–composition "T–x" and pressure–composition "P–x". Objectives: To estimate the VLE (vapor liquid equilibrium), including the dependence of the phase composition on temperature (T-x) and pressure (P-x) for the Pb-Zn alloy during vacuum distillation based on the MIVM (мolecular interaction volume model) model; to determine the thermodynamic parameters of the process. Methods Applied: The мolecular interaction volume model (or, MIVM) was applied to calculate the activity coefficients of the Pb-Zn alloy components. Originality: The VLE diagrams were built with the help of the MIVM model. Findings: Saturated vapour pressures were calculated for Pb (1.26.10–3–1.026.102) and Zn (1.552.103–1.756.106) within the temperature range of 873 to 1573 K. High values of the ratio p*Zn / p*Pb = (123.2–1.72) .104 and the separation factor βZn = 4.1–6.2 provide a theoretical basis for the selective separation of these metals by vacuum distillation, when zinc is enriched in the gas phase (βZn > 1) and lead – in the liquid phase. The mole fraction of lead in the gas phase уPb = (1–633) .10–6 increases with an increase of the temperature 873–1573 K and the mole fraction of the metal in the alloy xPb = 0.1–0.9. Using the MIVM model, the activity coefficients of zinc γZn= 0.682–0.997 and lead γPb= 0.73–0.998 were calculated for various compositions of the Pb-Zn alloy within the target temperature range. For VLE phase diagrams, the lever rule (or, the rule of lines) can be applied to help predict the quantities of the substance, residues and sublimates at the set temperature. The values of the excess Gibbs energy, enthalpy and entropy were found for the liquid–gas phase boundary in the Pb-Zn alloy: = 0.16–0.56 kJ/mol; = 0.087–0.292 kJ/mol; = 0.09–0.18 kJ/mol.К. Practical Relevance: The VLE phase diagrams of the alloys supply the information necessary for calculating the vacuum metallurgy process parameters, as well as for predicting the process temperature and pressure values required to obtain specific compositions of the Pb- and Zn-containing products.

Keywords

VLE phase diagram, vacuum distillation, мolecular interaction volume model.

Aleksey A. Korolev – Chief Engineer

Uralelectromed JSC, Verkhnyaya Pyshma, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sergey A. Krayukhin – Ph.D. (Eng.), Head of the Research Centre

Uralelectromed JSC, Verkhnyaya Pyshma, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gennady I. Maltsev – D.Sc. (Eng.), Senior Researcher, Principal Specialist

Research Centre of Uralelectromed JSC, Verkhnyaya Pyshma, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

1. Berman A. Total Pressure Measurements in Vacuum Technology. New York: Academic Press, 1985. 380 р.

2. Winkler O., Bakish R. Vacuum metallurgy. Amsterdam: Elsevier, 1971. 237 р.

3. Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb-Sn alloy with vacuum distillation. Transactions of Nonferrous Metals Society of China. 2013, vol. 23, iss. 6, pp. 1822–1831. doi: 10.1016/S1003-6326(13)62666-7

4. Wang A., Li Y., Yang B., Xu B., Kong L., Liu D. Process optimization for vacuum distillation of Sn–Sb alloy by response surface methodology. Vacuum, 2014, vol. 109, pp. 127–134. doi: 10.1016/j.vacuum.2014.07.013

5. Dai Y.N. Vacuum metallurgy of nonferrous metals. Beijing: Metallurgical Industry Press, 2009. 72 p.

6. Yang B., Kong L.-x., Xu B.-q., Liu D.-c., Dai Y.-n. Recycling of metals from waste Sn-based alloys by vacuum separation. Transactions of Nonferrous Metals Society of China, 2015, vol. 25, iss. 4, pp. 1315–1324. doi:10.1016/S1003-6326(15)63730-X

7. Liu D.C., Yang B., Wang F., Yu Q.C., Wang L., Dai Y.N. Research on the Removal of Impurities from Crude Nickel by Vacuum Distillation. Physics Procedia, 2012, vol. 32, pp. 363–371. doi: 10.1016/j.phpro.2012.03.570

8. Dai Y.N., Yang B. Non-ferrous Metals and Vacuum Metallurgy. Beijing: Metallurgical Industry Press, 2000. 40 p.

9. Smith J.M., Van H.C., Ness M.M. Introduction to Chemical Engineering Thermodynamics, sixth ed. Abbott. New York: McGraw-Hill, 2001. 749 p.

10. Tao D. P. A new model of thermodynamics of liquid mixtures and its application to liquid alloys. Thermochim. Acta, 2000, vol. 363, pp. 105–113. doi: 10.1016/S0040-6031(00)00603-1

11. Poizeau S., Kim H.J., Newhouse J.M., Spatocco B.L., Sadoway D.R. Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys. Electrochim. Acta, 2012, vol. 76, pp. 8–15. doi: 10.1016/j.electacta.2012.04.139

12. Newhouse J.M., Poizeau S., Kim H., Spatocco B.L., Sadoway D.R. Thermodynamic properties of calcium–magnesium alloys determined by emf measurements. Electrochim. Acta, 2013, vol. 91, pp. 293–301. doi: 10.1016/j.electacta.2012.11.063

13. Miyazaki N., Adachi N., Todaka Y., Miyazaki H., Nishino Y. Thermoelectric property of bulk CaMgSi intermetallic compound. Journal of Alloys and Compounds, 2017, vol. 691, pp. 914–918. doi: 10.1016/ j.jallcom.2016.08.227

14. Materials Science and Technology / Eds. R.W. Cahn, P. Haasen, E.J. Kramer. Vol. 1. Structure of Solids / Ed. V. Gerold. VCH. Weinheim. 1993. 621 p.

15. Hultgren R., Desai P. D., Hawkins D. T., Geiser M., Kelley K. K. Selected Values of the Thermodynamic Properties of Binary Alloys. ASM. Metals Park. OH. 1973. 847 р.

16. Dai Y., Yang B. Vacuum Metallurgy for Non-Ferrous Metals and Materials, Metallurgical industry Press, Beijing, 2000 (in Chinese). 124 р.

17. Yang H. W., Yang B., Xu B. Q., Liu D. C., Tao D. P. Application of molecular interaction volume model in vacuum distillation of Pb-based alloys. Vacuum, 2012, vol. 86, iss. 9, pp. 1296–1299. doi:10.1016/j.vacuum.2011. 11.017

18. Jiang W. L., Zhang C., Xu N., Yang B., Xu B. Q., Liu D. C., Yang H. W. Experimental investigation and modelling of phase equilibria for the Ag–Cu–Pb system in vacuum distillation. Fluid Phase Equilibria, 2016, vol. 417, pp. 19–24. doi: 10.1016/j.fluid.2016.02.026

19. Nan C. B., Xiong H., Xu B.-q., Yang B., Liu D. C., Yang H. W. Measurement and modeling of phase equilibria for Sb-Sn and Bi-Sb-Sn alloys in vacuum distillation // Fluid Phase Equilibria, 2017, vol. 442, pp. 62–67. doi:10.1016/j.fluid.2017.03.016

20. Zhao J. Y, Yang H. W., Nan C. B., Yang B., Liu D. C., Xu B.-q. Kinetics of Pb evaporation from Pb-Sn liquid alloy in vacuum distillation. Vacuum, 2017, vol. 141, pp. 10–14. doi:10.1016/j.vacuum.2017.03.004

21. Kong L.-x., Xu J., Xu B.-q., Xu S., Yang B. Vapor–liquid phase equilibria of binary tin–antimony system in vacuum distillation: Experimental investigation and calculation. Fluid Phase Equilibria, 2016, vol. 415, pp. 176–183. doi:10.1016/j.fluid.2016.02.012

22. Nan C.В., Yang H.W., Yang B., Liu D., Xiong H. Experimental and modeling vapor-liquid equilibria: Separation of Bi from Sn by vacuum distillation. Vacuum, 2017, vol. 135, pp. 109–114. doi:10.1016/j.vacuum.2016.10.035

23. Song B., Xu N., Jiang W., Yang B., Chen X. Study on azeotropic point of Pb–Sb alloys by ab-initio molecular dynamic simulation and vacuum distillation. Vacuum, 2016, vol. 125, pp. 209–214. doi: 10.1016/j.vacuum.2016.01.004

24. Zhang C., Jiang W.L., Yang B., Liu D.C., Xu B.Q., Yang H.W. Experimental investigation and calculation of vapor–liquid equilibria for Cu–Pb binary alloy in vacuum distillation. Fluid Phase Equilibria, 2015, vol. 405, pp. 68–72. doi:10.1016/j.fluid.2015.07.043

25. Seith W., Johnen H. State diagram of the system Pb-Zn. Z. Elektrochem, 1952, vol. 56, pp. 140–143.

26. Kong L.-x., Yang B., Xu B.-q., Li Y.-f., Li L. Application of molecular interaction volume model in separation of Pb–Sn–Sb ternary alloy by vacuum distillation. Transactions of Nonferrous Metals Society of China. 2013, vol. 23, iss. 8, pp. 2408–2415. doi:10.1016/S1003-6326(13)62748-X

27. Dong Z. W., Xiong H., Deng Y., Yang B. Separation and enrichment of PbS and Sb2S3 from jamesonite by vacuum distillation. Vacuum, 2015, vol. 121, pp. 48–55. doi:10.1016/j.vacuum.2015.07.009

28. Kong L.X., Yang B., Xu B.Q., Li Y.F. Application of MIVM for Pb–Sn–Sb ternary system in vacuum distillation. Vacuum, 2014, vol. 101, pp. 324–327. doi:10.1016/j.vacuum.2013.10.004

29. Kong L., Yang B., Xu B., Li Y., Liu D., Dai Y. Application of MIVM for phase equilibrium of Sn–Pb–Sb system in vacuum distillation. Fluid Phase Equilibria, 2014, vol. 364, pp. 1–5. doi:10.1016/j.fluid.2013.12.003

30. Baranov M.A. The spherical symmetry of atomic shells and the stability of crystals. Elektronnyy fiziko-tekhnicheskiy zhurnal [Electronic journal of engineering physics], 2006, vol. 1, pp. 34–48. (In Russ.)