Вестник
Магнитогорского государственного технического университета им. Г.И. Носова

№ 1 (37) март 2012 г.

Редакционный совет:

Председатель редсовета:

Члены редсовета:
А.В. Дуб – ген. директор ОАО НПО «ЦНИИТИМАШ», д-р техн. наук;
Д.Р. Каплунов – член-кор. РАН, проф., ИПКОН РАН, д-р техн. наук;
В.Ф. Рябинов – Президент ООО "Управляющая компания ММК", проф., д-р техн. наук;
В.М. Счастливцев – зав. лабораторией ИФМ УрО РАН; академик РАН, д-р техн. наук;
Ken-ichiro Mori – Professor Department of Production Systems Engineering, Toyohashi University of Technology, Japan;
Maciej Pietrzyk – Professor Akademia Górniczo-Hutnicza, Krakow, Poland.

Редакционная коллегия:

Главный редактор:
Г.С. Гуин – проф., д-р техн. наук.
Заместитель:
М.В. Чукин – проф., д-р техн. наук (отв. редактор).

Члены редколлегии:
Л.И. Антропова – проф., д-р фил. наук;
В.А. Быхов – проф., д-р техн. наук;
К.Н. Водяин – проф., д-р техн. наук;
С.Е. Гаврилов – проф., д-р техн. наук;
В.Н. Калмыков – проф., д-р техн. наук;
С.Н. Павлов – доц., канд. пед. наук;
М.Б. Пермяков – доц., канд. техн. наук;
А.М. Песин – проф., д-р техн. наук;
В.М. Самонов – проф., д-р техн. наук;
А.С. Сажинов – проф., д-р техн. наук;
А.Б. Сычков – проф., д-р техн. наук.

Ответственные редакторы по научным направлениям экспертных советов ВАК РФ:
М.А. Полонова – доц., канд. техн. наук;
М.В. Шуляка – доц., канд. техн. наук.

© ФГБОУ ВПО «МГТУ», 2012

На журнал можно подписаться в отделениях связи либо приобрести непосредственно в редакции.
Подписной индекс издания 48603 в объединенном каталоге «Пресса России», том 1.

Свидетельство о регистрации ПИ № ФС11-1157 от 18 апреля 2007 г.

Адрес редакции:
455000, г. Магнитогорск, пр. Ленина, 38
Тел.: (3519) 22-14-93
Факс (3519) 23-57-60
E-mail: rio_mgtu@ru; vestnik@magtu.ru

Журнал подготовлен к печати Издательским центром МГТУ им. Г.И.Носова.
Отпечатан на полиграфическом участке МГТУ.
Подписано к печати 22.03.2012.
Заказ 190. Тираж 500 экз. Цена свободная.
The magazine is included in the list of leading reviewed scientific journals and publications, in which shall be published by the basic scientific results of dissertations on competition of a scientific degree of the doctor and candidate of sciences, as well as in the database Russian index of scientific citation (RISC) and All-Russian Institution of Scientific and Technical information. Internet versions of the journal can be found on the Scientific Electronic Library site in the Internet.

PUBLISHED SINCE MARCH, 2003

Editorial committee

Chairman of editorial committee:

Members of the editorial committee:

D. R. Kaplunov – corresponding member of Russian Academy of Science, D.Sc.
V. Ph. Rashnikov – President of LTd “Magnitogorsk Steel and Iron Works managing company”, Prof., D. Sc.
V. M. Schastlivtsev – chief of laboratory in Russian Academy of Science, academician of Russian Academy of Science, D. Sc.
Ken-ichiro Mori – Professor Department of Production Systems Engineering, Toyohashi University of Technology, Japan.
Maciej Pietrzyk – Professor Akademia Gorniczo-Hutnicza, Krakow, Poland.

Editorial staff

Editor-in-chief:

G. S. Gun – Prof., D. Sc.

Deputy chief editor:

M. V. Chukin – Prof., D.Sc.

Members of the editorial staff:

L.I. Antropova – Prof., D.Sc.
V. A. Bigeev – Prof., D.Sc.
K. N. Vdovin – Prof., D.Sc.
S. E. Gavrishev – Prof., D.Sc.
V. N. Kalmykov – Prof., D.Sc.
S.N. Pavlov – Assoc. Prof., Ph.D.
M.B. Permyakov – Assoc. Prof., Ph.D.
A.M. Pesin – Prof., D.Sc.
V. M. Salganik – Prof., D.Sc.
A.S. Sarvarov – Prof., D.Sc.
A. B. Sychkov – Prof., D. Sc.

Executive editors in scientific fields of advisory committee of Higher Certifying Commission in the Russian Federation:

M. A. Polyakova – Assoc. Prof., Ph.D.
M. V. Shubina - Assoc. Prof., Ph.D.

© Federal state budgetary institution of higher professional education “Magnitogorsk State Technical University named after G. I. Nosov”, 2012

One can subscribe for the journal in the general publication catalogue of scientific-technical information, the subscription index of the journal 73849, or get the journal right in the editorial office.

Registration certificate ПИ № ФС11-1157 April 18, 2007 г.

Editorial address:

455000, city Magnitogorsk, Lenin Str. 38
Phone number: (3519) 22-14-93
Fax: (3519)23-57-60
Email: rio_mgtu@ru; vestnik@mgtu.ru

Published by publishing center of MSTU named after G. I. Nosov.
Signed for press 22.03.2012.
СОДЕРЖАНИЕ

<table>
<thead>
<tr>
<th>Разработка полезных ископаемых</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Корнялов С.Н., Гаврилов С.Е., Крамков В.Н., Гоготкин А.А., Петрова О.В., Пытлаев И.А.</td>
<td>Изыскание эффективных вариантов отработки железорудных месторождений Бакалыского рудного поля</td>
</tr>
<tr>
<td>Валыч В.С., Туркун И.С.</td>
<td>Технико-экономическая эффективность применения передвижных проходческих подъемных установок</td>
</tr>
<tr>
<td></td>
<td>с безредукторным гидравлическим приводом при проходке вертикальных стволов строящихся шахт</td>
</tr>
</tbody>
</table>

Технологии переработки и утилизации техногенных образований и отходов

| Емельянов Е.А., Анисков В.А., Емельянов М.М. | Разработка способа формирования техногенного образования из хвостов обогащения медно-цинковых руд с заданными структурными характеристиками | 13 |
| Карпова Л.М., Кирпичников И.Б., Жукаев К.Ж. | Оптимизация условий обеспечения автономности обжига медного сульфидного концентрата | 16 |

Металлургия черных, цветных и редких металлов

| Сабашутдинов С.К., Харченко А.С., Текель Э.О., Степанов Е.М., Мезин Л.А., Фетисов В.Б. | Прочностные характеристики коксового орешка различного происхождения | 19 |
| Черчицев В.Д., Савина Ю.Е. | Совершенствование аборционных процессов улавливания диоксида серы из газов агломерационного производства | 21 |

Литейное производство

| Мощунов В.В., Стоялов А.М., Казаков А.С. | Определение длины лунки жидкого металла в непрерывнолитых слитках из трубной стали с использованием эффекта «искусственного раздутия» | 26 |

Обработка металлов давлением

Герасимов В.Я., Перышкин Д.Н.	Проявление эффекта Бахингера при осадке стальных цилиндров	30
Горюхов Ю.В., Осинов В.В., Соло́ко Н.В., Катю́к В.П.	Участ температуры полей деформационной зоны при непрерывном прессовании металлов методом Конформ	31
Огурцов Н.Н., Шеметова Е.С.	Оценка устойчивости пластической деформации оболочки при волочении биметаллической проволоки	34
Раскатов Е.Ю.	Исследование напряженно-деформированного состояния металла в очаге деформации при пузиревидной прокатке труб	37
Федосеева С.А.	Оптимизация планирования прокатного производства	40

Материаловедение и термическая обработка металлов

| Мирзаев Л.А., Овчинников Ю.Ю., Мирзаев А.А., Шабуров А.Д. | Релаксация ближнего порядка атомов вдвоем в сплавах Fe–Пd–H при термических воздействиях | 43 |
| Гаваль В.Н., Сальников В.Г., Романенко Д.Н., Алексин Ю.Ю., Квашин В.Н. | Низкотемпературное цианирование электролитических железокроликовых покрытий | 48 |

| Сидельников С.Б., Довженко Н.Н., Трифоненков Л.И., Перущих М.В., Баранов В.Н., Лопатина Е.С., Довженко И.Н., Безылют В.М. | Исследов ание структуры металла и оценка свойств опытных образцов из сплава системы Al–Zr для производства электроводоков с помощью методов литвы и обработки давлением | 51 |

Машиностроение. Надежность и долговечность оборудования

| Белолетский Л.С., Исмаилов Р.Р. | Пути повышения служебных свойств валков станов холодной прокатки | 56 |
| Чаплыгин Б.А., Буторин Г.И. | Новое поколение общемашиностроительных нормативов режимов резания на работы, выполняемые на шлифовальных и доводочных станках | 61 |

Энергетика металлургии, энергосбережение и электroteхнические комплексы

| Омартова К.А., Смолотовских И.Н., Кольга А.Д., Термерсонов А.Т., Омарова Т.К. | Автоматизация проектирования систем контроля и технической диагностики конвейерных линий | 67 |

Экономика, управление и рынок продукции

| Кудолковцев Е.В. | Объединяющие показатели инвестиционной привлекательности проекта и предприятия | 71 |
| Данилов В.В., Рымкова И.Г., Воинова Е.С. | Анализ структуры и оценка пропорциональности производственных мощностей предприятия | 79 |

Педагогика и психология

| Семенова О.А. | Влияние педагогических технологий на развитие профессиональной направленности студентов в графической деятельности | 94 |

Новые материалы и технологии

| Гончарова О.Н., Сергеев С.Н. | Инфильтрованные материалы на основе механически активированных в жидкостных средах порошковых шихт Fe-Ni | 98 |

Методы и средства технического диагностирования	102	
Гусев И.Г., Салгицин В.М., Евдокимов С.А., Сарымбаев А.А.	Основные неисправности и методы диагностирования силовых трансформаторов в условиях эксплуатации	108
Каранчев А.С., Евдокимов С.А., Давыдов Д.Х., Патрушен Н.Н., Сырьямбаев А.А.	Диагностирование силовых трансформаторов методом акустической локации частичных разрядов	105

Сведения об авторах

| The information about the authors | 112 |
CONTENT

Mining .. 5
Kornilov S.N., Gavrilesh S.Y., Kalmykov V.N.,
Gogotin A.A., Petrow O.V., Pyatayev I.A. Research of effective variants of working on iron ores deposits
Bakals of an ore field .. 5

Vagin V.S., Turgan I.S. For perfection shaft lifting it is
considered uses in a drive of mobile hoist engines
compact without reduction a hydraulic actuator providing
decrease in dynamic loadings of an elevating complex 10

Processing and Utilization Technologies
of Formations and Wastes .. 13

Emeljanenko E.A., Angelov V.A., Emeljanenko M.M.
Working out of the way of formation of technogenic
formation from tails of enrichment medno-kolchedannych
ores with the set structural characteristics. 13
Karimova L.M., Kairalapov Y.T., Zhumashev K.J.
Optimization of conditions ensuring autogenerated
roasting of copper-sulfide concentrate 16

Metallurgy of Ferrous, Non-Ferrous
and Rare Metals ... 19

Sibagatulin S.K., Kharchenko A.S., Teplykh E.O.,
Stepanov E.N., Mezin D.A., Fetisov V.B. Strength
characteristics of coke nut of different origin. 19
Cherchintsev V.D., Savina J.E. Improvement of the
absorbing processes of capturing sulfur dioxide. 21

Foundry Engineering ... 24

Moshkunov V.V., Stolyarov A.M., Kazakov A.S.
Determination of the length to point of solidification in
strands of Peritectic Low Alloyed steels for pipes
using "Mini whale" effect ... 24
Sushko T.I., Lednev A.S., Pushnava T.V., Rudneva I.G.
Analysis of the causes of failure in the manufacturing
of metal casting through the hull of a computer
simulation of casting processes LVM Flow.......................... 26

Pressure Treatment of Metals 30

Gerasimov V.Y., Paryshev D.N. Development of
Bauschinger effect during setting of steel cutinders........... 30
Gorohov V.Y., Osipov V.V., Solopko I.V., Katryuk V.P.
Calculation of temperature fields of a deformation zone
at continuous pressing of metals by a method
of Conform ... 31
Ogarkov N.N., Shemtova E.S. Sustainability
deformation plakiruû ekvivalent shell bimetallic eskow wire. 34
Raskatov E.Yu. Investigations of mode of deformation
of metal in the deformation zone during pilger rolling
of pipes .. 37
Fedoseev S.A. Optimization of industrial planning
for hardware-metal works. .. 40

Material Science and Thermal Metal Treatment 43
Mirzaev D.A., Okishiev K.Yu., Mirzoev A.A.,
Shaburov A.D. Relaxation of short-range order
of interstitial atoms in Fe-Pd-H alloys under
thermal effects ... 43
Gadalov V.N., Salminov V.G., Romanenko D.N.,
Aleshin I.G., Kvashnin B.N. Low-temperature
cyanidation electrolytic iron-chrom coverings 48
Sidelnikov S.B., Dovzhenko N.N., Trifonov N.P.,
Pervushin M.V., Baranov V.N., Lopatina E.S.,
Dovshenko L.N., Bepalko V.M. Study of metal structure
and properties assessment of test samples made of Al-Zr
alloys being used for electric conductor production
using methods of molding and forming 51

Mechanical Engineering, Safety
and Durability of Equipment .. 56
Belovskii L.S., Ismaglov R.R. The ways
of increasing service properties of rolls
sheet cold mills ... 56
Chaplygin B.A., Bytorin G.I. New generation
of the total machine-building norms of cutting regimes
for the works, carried out on the polishing
and finishing machines ... 61

Power Supply of Metallurgy, Energy Saving
and Heat Power .. 67
Omelchenko E.I., Agapitov E.B., Moiseev V.O.
Thermodynamic model of induction motor 67

Automation Projection of Technological Processes 71
Omarov K.A., Stolpovskiy I.N., Kolga A.D.,
Temerzhanat O.T., Omarova T.K. Automation
design controls and technical
diagnostics conveyor lines 71

Economics, Management and Production Market 74
Kolokolceva E.V. United ratios of attractiveness
of the project and enterprise .. 74
Danilov G.V., Ryzhova I.G., Vojnova E.S. Structure
analysis and Value estimation of production capacity
proportionality of enterprise .. 79
Kasataya I.I. Formation and realization innovative
potential in national economy 82
Pinkovetskaya J.S. Economic-mathematical modeling
turnover of small enterprises 88
Vitik S.V. Complex approach to building multi-level
stimulation reproductive work 91

Pedagogics and Psychology 94
Semenova O.A. The influence of the pedagogical
technologies on the development of the students' professional trend
in the drawing activities ... 94

New Materials and Technologies 98
Goncharova O.N., Sergeenko S.N. Infiltrated
materials based on mechanically activated in liquid
media powder mixture Fe-Ni 98

Methods and Means of Technical Diagnostics 102
Gun I.G., Salgantik V.M., Evdokimov S.A.,
Sarlybaev A.A. The basic derangements and methods
diagnosing of mains transformers under
operating conditions ... 102
Karandaev A.S., Evdokimov S.A., Devyatov D.I.,
Parsunkin B.N., Sarlybaev A.A. Diagnosing
of mains transformers method of the acoustic
location of partial bits ... 105

The information about the authors 112
РАЗРАБОТКА ПОЛЕЗНЫХ ИСКОПАЕМЫХ

УДК 622.341.15
Корнилов С.Н., Гавришев С.Е., Калмыков В.Н., Гоготин А.А., Петрова О.В., Пыгалев И.А.
ИЗЫСКАНИЕ ЭФФЕКТИВНЫХ ВARIANTОВ ОТРАБОТКИ ЖЕЛЕЗОРУДНЫХ МЕСТОРОЖДЕНИЙ БАКАЛЬСКОГО РУДНОГО ПОЛЯ

В статье рассматриваются возможные варианты эффективной доработки запасов железных руд карьеров «Сидеритовый» и «Ново-Бакальский» Бакальского рудного поля. Представлены варианты отработки запасов железной руды в стесненных условиях открытым, подземным и комбинированным способами. В результате технико-экономического сравнения выбран оптимальный вариант ведения горных работ.

Ключевые слова: доработка, разработка, железные руды, карьер, система разработки, комбинированная отработка.

The article considers possible variants of effective completion of stocks of iron ores in the open-cast minings «Sideritic» and «New-Bakals» of the Bakals an ore field. Variants of working off of stocks of iron ore in the constrained conditions opened, underground and combined are presented by the ways. As a result of technical and economic comparison the optimum variant of conducting mountain works is chosen.

Key words: completion, mining, iron ores, open-cast mining, system of the mining, the combined working off.

Спецификой месторождений Бакальского рудного поля является низкое содержание железа (в среднем 35%) при высоком содержании оксида магния (в среднем 11%). Именно наличие магнезита не позволяет рассматривать Бакальские месторождения в качестве основной сырьевой базы ОАО «ММК». В силу особенностей горно-геологического строения месторождений, отработка запасов ведется открытым и подземным способами. При этом качество руды, добываемой открытым способом, выше качества руды, добываемой подземным способом. Разубоживание в первом случае составляет менее 3%, во втором — более 10%. Таким образом, в результате сложных горно-геологических условий, высокого разубоживания и низкого содержания железа проект горных работ по добыче руды месторождений Бакальского рудного поля требует особого подхода.

В пределах Бакальского рудного поля (площадь 150 км²) насчитывается более 20 железорудных месторождений.

Северо-Шиханский участок представлен серией рудных тел, располагающихся в разных географических пачках и на различных глубинах. На площади Сидеритового карьера рудные тела залегают вблизи поверхности и отрабатываются открытым способом. Основная часть запасов железных руд входит в поле шахты Сидеритовая и отрабатывается подземным способом.

Карьер Сидеритовый относится к «Северному» участку месторождения. В настоящее время карьер закоронирован и горные работы на нем не ведутся. Отработка запасов сидеритовых железных руд карьером велась с отступлением от проекта «Разработка сидеритов в зоне кварцитового карьера в поле шахты Сидеритовая». В результате чего часть запасов, около 3 млн тонн блока №30, оказались в сложных горнотехнологических условиях и их отработка на тот период времени являлась экономически нецелесообразной.

Низкое содержание сидерита в руде, характерное для месторождений Бакальской группы, и высокое разубоживание при подземном способе добычи, а также благоприятная ситуация на рынке черных металлов в настоящее время предопределили необходимость извлечения запасов блока №30 Северного участка Шиханского месторождения сидерита открытым способом.

Рудные тела блока №30 представлены сидеритами, имеющими неправильную плоско- или линзообразную форму. Наибольшая мощность рудных тел — до 35 м, наблюдается в северной части карьера.

В контурах карьера оставшиеся к доработке промышленные запасы составляют 1587,7 тыс. т. Данный объем определен в результате подсчета запасов с учетом следующих горно-геологических и технологических условий:

1) западный борт карьера частично попадает в границу зоны воронкообразования в результате ведения подземных горных работ шахты «Сидеритовая»;
2) на поверхности северного борта размещены внешние отвалы.

В соответствии с заданной годовой производительностью (300 тыс. м³) оставшиеся запасы положен искаемого достаточны для работы карьера в течение 7,3 года, однако выход на проектную мощность возможно только на третьи год эксплуатации. Это связано со стесненными условиями в контурах существующего карьера, отсутствием транспортного доступа на верхние горизонты и требованиями предприятия к минимально-му количеству горнотранспортного оборудования при обеспечении надежности работы карьера [1].

Для обеспечения возможности добычи сидеритов были предложены и обоснованы следующие проектные решения:
1. Формирование транспортного доступа к верхним горизонтам для доставки въемочно-погрузочного оборудования и порожних автосамосвалов. В результате расчетов выбран оптимальный способ устройства автодороги вдоль юго-восточного борта карьера на базе ранее существовавшей железнодорожной ветки, связывающей Центральный карьер с промплощадкой ДОФ. Принято решение о формировании однополосной автодороги категории IV к ширине не менее 12,1 м, за счет отсыпки ее из вскрытых пород существующих отвалов. При этом объем отсыпки составит 5 тыс.м³. Следует отметить, что данная дорога конструтивно не предназначена для пропуска грузенных автосамосвалов (рис. 1 (1)).

![Рис. 1. Схема транспортных коммуникаций на гор. 750 м](image)

2. Извлечение максимального объема сидерита в стесненных условиях карьера. Оно предполагает формирование временного автомобильного съезда на существующей в восточной части карьера площадке из вскрытых пород [2], добываемых при отработке верхних горизонтов с отметками 790–770 м (рис. 1 (2)). При этом будет обеспечен транспортный доступ с горизонта 750 м на горизонт 720 м, а также на горизонты 740 и 730 м за счет разворотных площадок с отметкой 744 и 731 м. (рис. 1 (3)).

Данные проектные решения обеспечивают отработку максимального объема запасов в стесненных горно-геологических и горнотехнических условиях карьера «Сидеритовый».

При доработке запасов железной руды карьера «Сидеритовый» подготовка полезного ископаемого к выемке производится бурильным способом, в качестве ВВ применяются гранитонит 79/21 и эмульсионные ВВ. В последующем порода

отгружается экскаваторами ЭКГ-5 в автосамосвалы БелАЗ-7547 45 т. Грузоподъемностью 45 т. Вскрыша транспортируется в восточном направлении для складирования во внешне отвалы, а руда — на склад для перегрузки на железнодорожный транспорт.

В соответствии с заданием на проектирование необходимо было определить месторасположение перегрузочного склада руды. Были рассмотрены три варианта, сравнение которых производилось только по отличающимся параметрам (рис. 2).

Вариант 1. Предполагает задействовать существующий перегрузочный склад на карьере «Петлинский». В данном варианте доставка руды из карьера «Сидеритовый» до перегрузочного склада будет осуществляться автомобильным транспортом, среднее расстояние транспортирования 5100 м. На существующем перегрузочном складе имеющееся оборудования достаточно для переработки суммарного объема руды.

Вариант 2. Строительство нового перегрузочного склада у поста №9 железнодорожного перегона Бакал – ст. Кварцтная. Для реализации данного варианта необходимо восстановить железнодорожный путь и контактную сеть общей протяженностью 1100 м, произвести планировочные работы на месте предполагаемого склада, задействовать дополнительное оборудование (экскаватор ЭКГ-5, бульдозер Т-170 (Т-330, ДЭТ-250)). В данном варианте доставка руды из карьера «Сидеритовый» до перегрузочного склада будет осуществляться автомобильным транспортом, среднее расстояние транспортирования 2800 м.

Вариант 3. Строительство нового перегрузочного склада в районе ПГО карьера «Петлинский» на базе существующего железнодорожного пути. Для реализации данного варианта необходимо задействовать дополнительное оборудование (экскаватор ЭКГ-5, бульдозер Т-170 (Т-330, ДЭТ-250)). В данном варианте доставка руды из карьера «Сидеритовый» до перегрузочного склада будет осуществляться автомобильным транспортом, среднее расстояние транспортирования 3800 м.

![Рис.2. Варианты размещения перегрузочного склада](image)
В результате проведенного технико-экономического сравнения трех вариантов размещения пере-
грузочного склада наиболее эффективным оказался третий вариант. В укрупненных расчетах не учиты-
вались текущие затраты на эксплуатацию склада до вто-
рого и третьего вариантов, а также затраты на его лик-
видацию после завершения добочных работ на карьере «Сидеритовый». Это связано с тем, что территория для рассматриваемых складов располагается на землях, нарушенных горными работами и подлежащих рекуль-
тивации после завершения отработки, а задействован-
ное оборудование предполагается переместить на дру-
гие объекты ООО «Бакальское рудоуправление». Схе-
ма перегрузочного склада в районе ПТО карьера «Пет-
линский» представлена на рис. 3.

Разработанные проектные решения и заданный годовой объем добычи сидерита определили кален-
дарный план горных работ, при котором выход карь-
ера на проектную мощность возможен только на третий год. Это связано с горно-геологическими и
горнотехническими особенностями карьера «Сиди-
ретовый». При этом, в стесненных условиях, при
отсутствии транспортной полосы отработка уступа производится тупиковыми заходками с шириной
рабочей площадки – 24,0 м. На участках с шириной
площадки менее 24 м предусматривается подача ав-
tосамосвала к экскаватору задним ходом на расстоя-
ние не более 30 м.

Таким образом, в соответствии с предложениями
проектными решениями, в результате доработки запа-
сов железной руды карьер «Сидеритовый» будет сформирован карьер, глубина которого составит
120 м при ширине берм безопасности, равной 10 м, и
углом строенного нерабочего уступа, равным 60°. При
этом в течение 5 лет будет добыто более 1,5 млн т
сидерита.

Карьером «Ново-Бакальский» отрабатывается
также западная часть Северо-Шиханского мероро-
дения, которое сложено маломощными пластообраз-
ными залежами сидеритов, падающими на юго-восток
под углами 20–50°.

При выходе карьера «Ново-Бакальский» на про-
ектный контур часть запасов Ново-Бакальского ме-
сторождения осталась в приконтурной зоне. Добы-
ча данных запасов может осуществляться откры-
тым, подземным и комбинированными способами. Возникает необходимость выбора рационального
способы отработки данных запасов, позволяющего
существенно снизить капитальные и эксплуатаци-
онные затраты при выемке приконтурных запасов
сидерита.

Ново-Бакальское месторождение отработано карь-
ером до отметки 440 м. Борта карьера сложены, в
основном, скальными породами, прочностные и де-
формационные свойства которых определяются
структурой массива.

Балансовые запасы руды по выемочным единицам,
рассчитанные на основании разрезов, по блоку №29 со-
ставляют 6,9 млн т (рис. 4).

Рис. 3. Схема перегрузочного склада

Условные обозначения
1. Указатель секторов
2. Аншлаг "Разгрузка запрещена"
3. Аншлаг "Разгрузка разрешена"
4. Место стоянки бульдозера
5. Мачта освещения
6. Экскаватор ЭКГ-5А
7. Автосамосвал
8. Схема движения
Было рассмотрено три способа доработки месторождения: открытый, комбинированный и подземный.

При доработке Ново-Бакальского месторождения объемом работ по горной массе составляет 3,5 млн м³. Разрез юго-восточного борта карьера производится с отм. +795 м до отм. +500 м. Извлекаемые запасы составят 265 тыс. м³, объем вскрыши — 3,235 млн. м³, коэффициент вскрыши — 3,5 м³/т. Однако технологически обеспечить извлечение данных объемов весьма сложно, поскольку для расконсервации данного борта необходимо создание минимальных рабочих площадок вдоль всего юго-восточного борта, что в свою очередь потребует переноса части отвалов, находящихся на данном борту. В связи с этим, доработка открытым способом не рентабельна.

Возможны следующие варианты отработки части прибортовых запасов блока № 29 с использованием открыто-подземных технологий. Объем запасов выше горизонта 520, прилегающих к контуру карьера «Ново-Бакальский», составляет 27,5 тыс. м³ при увеличении угла заострения уступов до 62°. В качестве конкурирующих были рассмотрены варианты с различными схемами размещения бурового оборудования. В первом случае бурение производится непосредственно из карьерного пространства буровыми стакками НКР-100М. Однако, это трудноосуществимо в связи с тем, что расстояние от бурового станка до борта карьера изменяется от 1 до 8 м. Обуривание массива с бермы вышележащего горизонта затруднительно в связи с отсутствием и настоящим временем доступа к ней. Во втором случае предлагалось использовать в качестве места размещения бурового станка буровой штреk, пройденный в борту карьера. В обоих вариантах отбойка будет производиться зарядами взвешенных скважин тяжелыми сечениями. Последующая уборка и доставка рудной массы осуществляется экскаватором ЭКГ-5 и самосвалами БелАЗ.

Реализация обоих вариантов потребует прекращения работы карьера «Ново-Бакальский» на длительный срок (до полугода). Поэтому данные варианты впоследствии не рассматривались.

Для отработки прибортовых запасов блока №29 принято к рассмотрению следующие системы разработки и схемы подготовки.

Этажно-камерные системы разработки с подэтажной отбойкой переносным или самоходным оборудованием и выдачей рудной массы через наклонный конвейерный ствол (рис. 5).

Рис. 5. Этажно-камерная система разработки с подэтажной отбойкой:
1 — вентиляционный штрек № 1; 2 — буровой орт; 3 — подэтажные штреки; 4 — блоковый восстанавливающий; 5 — звезды; 6 — транспортный штрек; 7 — доставочный орт; 8 — транспортный штрек 1/29; 9 — камера скреперной лебедки; 10 — транспортный штрек 1/28; 11 — дуэка; 12 — скреперный орт; 13 — предохранительный целик.
Системы разработки открытыми камерами и подтажным обрушением с применением самоходного оборудования (рис. 6):

1) с выдачей рудной массы: через карьерное пространство; через наклонный конвейерный ствол;
2) с подготовкой блока №29 к очистным работам: полевой; рудной; комбинированной;
3) с расположением панелей: вкрест простирания рудного тела; параллельно рудному телу.

При применении этажно-камерной системы разработки с подтажной обработкой, у контура карьера оставляется предохранительный цилиндр шириной 20 м.

Расчетный пролет камеры при применении самоходного оборудования – 26 м, переносного оборудования – 20 м, ширина междукамерного цилиндра – 14 м при применении самоходного оборудования, 11 м – переносного. Высота камеры 60 м, длина изменяется в зависимости от мощности рудного тела – от 90 до 40 м. После отработки камерных запасов осуществляется выемка целиков. При применении данной системы разработки потери составляют – 28.6%, разубоживание – 9.8%.

Для отработки блока №29 рассмотрены также системы разработки открытыми камерами и подтажного обрушения с применением самоходного оборудования. При данном варианте выдача рудной массы может осуществляться как через наклонный конвейерный ствол непосредственно на ДОФ, так и в карьерное пространство, а затем на обогатительную фабрику.

В первом случае с каждого подтажа рудная масса будет перемещаться посредством рудоспусков на горизонт 480 м. Там, через полки с помощью скреперных лебедок ЛС-55-2С грузится в вагонетки и затем доставляется до наклонного конвейерного ствола. Дополнительно необходимо проведение откаточных выработок по горizontу 480 м, длина которых составляет 1296 м, а объем работ – 15552 м³.

Во втором варианте выдача рудной массы осуществляется посредством автосамосвалов МоАЗ-7529 через наклонный съезд в карьерное пространство, затем производится перегрузка в карьерные автосамосвалы БелАЗ. После этого рудная масса поступает на рудный склад, где перегружается в вагоны, и по железнодорожной доставляется на ДОФ.

Таким образом, для отработки запасов блока №29 сконструированы четыре технологические схемы с двумя различными вариантами доставки рудной массы до ДОФ:

– с расположением полевой подготовительной выработки по лежачему борту рудного тела и ориентацией панелей вкрест простирания;
– с проходкой рудной подготовительной выработки вдоль борта карьера с оставлением охранных целика и ориентацией панелей вкрест простирания рудного тела;
– с размещением полевой подготовительной выработки по лежачему боку залежи, рудной выработки в борту карьера, оставлением охранных целика и ориентацией панелей вкрест простирания рудного тела;
– с расположением полевой подготовительной выработки по лежачему боку рудного тела и ориентацией панелей по простиранию.

По данным системам разработки был произведен расчет критериев эффективности инвестиционных проектов.

Анализ полученных результатов позволил предпочтительность вариантов систем разработки открытыми камерами, подтажного обрушения и применением самоходного оборудования. Варианты предусматривают полевую подготовку блока и расположение панелей вкрест простирания рудного тела, выдачу рудной массы через карьерное пространство. Реализация данного варианта для отработки блока №29 обеспечит максимум чистого дисконтированного дохода – 96,46 млн руб., срок окупаемости инвестиций – 5 лет, индекс доходности – 5 и внутреннюю норму доходности 29.3% при сроке освоения запасов 16 лет с годовой производительностью 350 тыс.

Рис.6. Отработка блока №29 системой разработки: подтажное обрушение и ориентацией панелей вкрест простирания
Сопоставимым по экономическом показателям является вариант системы разработки открытыми камерами и подэтажного обрушения с применением самоходного оборудования. Вариант предусматривает полевую подготовку блока, расположение панелей вверху проходимости рудного тела, выдачу рудной массы через карьер. Значение чистого дисконтированного дохода по данной системе разработки на 6% меньше, чем при варианте с полевой подготовкой блока к выемке, внутренняя норма доходности и срок окупаемости на одном уровне, индекс доходности ниже на 20% и составляет 4,05.

Повышение качества рудной массы и снижение себестоимости добывшей рудной массы обосновывается применением мощного высокопроизводительного оборудования.

Внедрение систем разработки открытыми камерами и подэтажного обрушения при отработке при- контурных запасов ведет к существенному снижению удельного объема подготовительно-направленных работ, позволяет произвести въемку запасов с высокой полнотой извлечения.

Список литературы

2. Гавришев С.Е., Пыталев И.А. Перспективные направления использования отвалов и выработанного карьерным пространства // Вестник МГТУ им. Г.И. Носова. 2007. №4. С.10-14.

Bibliography

УДК 622.676-82

Вагин В.С., Турукин И.С.

ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ПЕРЕДВИЖНЫХ ПРОХОДЧЕСКИХ ПОДЪЕМНЫХ УСТАНОВОК С БЕЗРЕДУКТОРНЫМ ГИДРАВЛИЧЕСКИМ ПРИВОДОМ ПРИ ПРОХОДКЕ ВЕРТИКАЛЬНЫХ СТВОЛОВ СТРОЯЩИХСЯ ШАХТ

Приведены результаты сравнительного анализа технико-экономических показателей передвижных проходческих подъемных установок с редукторным асинхронным и безредукторным гидравлическим приводами при сооружении вертикальных стволов шахт.

Ключевые слова: проходческая подъемная установка, тяжелый орган, стальная лента, безредукторный гидравлический привод, электромеханический асинхронный привод, экономическая эффективность.

Key words: prohodchesky elevating installation, traction body, steel tape, without a reducer an electrohydraulic drive, electromechanical asynchronous drive, economic efficiency.

Важнейшей задачей, стоящей перед горнодобывающей промышленностью, в настоящее время является обеспечение промышленности России топливно-сырьевыми ресурсами. Решение этой стратегической задачи настоятельно требует увеличения масштабов и темпов нового шахтного строительства. При этом остается проблема максимального сокращения сроков сооружения вертикальных стволов вызывает необходимость существенного повышения технического уровня и эффективности горно-проходческой техники, особенно в периодическом исполнении.

Применяемые в настоящее время одноканатные передвижные проходческие подъемные машины типа МПП имеют значительную массу (14–177 т), большие габариты и относительно небольшую высоту подъема (300–600 м) при номинальной грузоподъёмности 25–171 кН. При этом масса электромеханического асинхронного привода машин составляет 10–45 т (25–40 % от их полной массы).

Для повышения степени технического совершенства проходческого подъема необходимо решение двух вопросов: во-первых, создания малогабаритных проходческих подъемных машин, во-вторых, компактных высокоэффективных безредукторных систем приводов. Успешное решение первого вопроса возможно путем использования высокопрочной гибкой стальной ленты. При этом масса подъемных машин с бобиной навивки стальной ленты при использовании бедней емкостью от 1 до 6,5 м³ уменьшается более чем в четыре раза [1].

Для малогабаритных передвижных проходческих подъемных машин нужен особо компактный нетрадиционный
ционный привод. Таковым может быть силовой высокомоментный объемный безредукторный гидропри дов [2], масса которого в 1,6-2 раза меньше электро механического асинхронного привода. Такое кон структурное решение позволяет снизить суммарную массу передвижных проходочных подъемных машин в 3-4 раза [1] в сравнении с машинами МПП.

Исследования динамики передвижных проходческих подъемных установок с бочинной навивкой ленточного тягового органа и безредукторным гидравлическим приводом [3] показали, что максимальные дина мические нагрузки на тяговый орган на 20–30% меньше, чем для канатных подъемных установок с асинхронным приводом. Это означает, что при одинаковой динамичности (нагрузки на тяговый орган) для проходческих подъемных систем с безредукторным гидравлическим приводом можно повысить величину поднимаемого груза не менее чем на 20–30% [2], что практически реализуется путем навески бады в нижней части блок-кизеля большего диаметра. Последнее приведет к повышению производительности проходческого подъема и способствует увеличению среднемесячной скорости проходки вертикального ствола шахты.

Основным показателем, позволяющим оценить эффективность применения передвижных проходческих подъемных установок с различными системами приводов, является их производительность, определяемая скоростью проходки ствола.

Среднемесячная скорость проходки A (м/мес) определяется по формуле [4,5]

$$A = \frac{24n - T_\text{po} - T_{\text{cm}}}{T + T_\text{y}},$$

где n – число рабочих дней в месяц; T_\text{po} – время осмотра сосудов, прицепленных устройств, ствола, тягового органа, ревизии и ремонта подъемной машины в течение месяца, определяемое в соответствии с нормативными данными [4,6]; T_{\text{cm}} – время подъема и спуска смены в течение месяца [6], ч; T – суммарное время составляющих цикла (длительность буровзрывных работ, крепления ствола, наращивания трубопроводов, ремонтных работ) за исключением несмещенных работ по осмотру и ремонту ствола, подъему и спуску смены и времени уборки породы [4], ч; T_\text{y} – время уборки породы после взры ва, рассчитываемое по рекомендациям [4], ч; l – продвижение забоя за цикл, м.

Продолжительность проходки ствола в месяц [4]

$$T_\text{y} = \frac{H_{\text{cm}}}{A}$$

где H_{\text{cm}} – глубина ствола, м.

Результаты расчета скорости и продолжительности проходки стволов в зависимости от глубины ствола при использовании для проходки стволов передвижных канатных машин типа МПП с асинхронным приводом и однобобинных многобобинных подъемных машин с безредукторным гидравлическим приво дом представлены на рис. 1. При этом расчет проведен для одинаковой мощности приводов и одинаковых коэффициентов динамичности на тяговые органы ма шин по следующим исходным данным: диаметр готового ствола в свете 6 м, максимальная скорость движения бадей 7 м/с, число рабочих дней в месяц – 30, продвижение забоя за цикл – 4 м, вместимость бадей 1,5; 2; 2,5; 3; 4,5; 6,5.

Анализ полученных зависимостей свидетельству ет о том, что при одинаковой установленной мощно сти приводов подъемных машин и равной динамичности на тяговый орган скорость проходки стволов при использовании машин с гидроприводом (зависимости 2, 4, 6) на 5–7 м/мес выше, чем для подъемных машин с асинхронным приводом (зависимости 1, 3, 5), а продолжительность сооружения стволов меньше в среднем на 1 месяц в зависимости от глубины проходки. При увеличении глубины проходки ствола до 1200 м пророст темпов проходки за счет использования передвижных подъемных машин с гидроприводом составляет порядка 16 м/мес (см. рис.1).

Рис. 1. Зависимости среднемесячной скорости 1, 2, 3, 4, 5, 6 и продолжительности проходки стволов 1; 2; 3; 4; 5; 6 при вмещимости бадей соответственно 2; 2,5; 3; 4,5; 6,5 м³ от глубины ствола для подъемных установок с безредукторным гидроприводом и (2, 4, 6) и асинхронным редукторным (1, 3, 5) и (1, 3, 5).

Один из основных показателей оценки экономич еской эффективности внедрения передвижных проход ческих подъемных установок может быть суммарный экономический эффект (Σ Э). Он находится в соответствии с общепринятой методикой [7] по формуле

$$\Sigma \mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3 + \mathcal{E}_4 + \mathcal{E}_5,$$

где \(\mathcal{E}_1 \) – экономический эффект от снижения себестоимости строительно-монтажных работ при использовании передвижных проходческих подъемных машин с безредукторным гидравлическим приводом; \(\mathcal{E}_2 \) – экономический эффект от уменьшения единовременных затрат при использовании подъемных установок с гидроприводом; \(\mathcal{E}_3 \) – экономический эффект за счет снижения эксплуатационных расходов с учетом различной продолжительности использования проходческих подъемных установок с асинхронным и гидравлическим приводами и при этом снижение расхода электрической энергии, обусловленное рекуперацией ее в гидравлическом приводом при спуске порожней бады и различных грузов.
в ствол: E_1 — экономический эффект от уменьшения размера прямых и накладных расходов в связи с сокращением продолжительности строительства и снижения условно-постоянной доли прямых и накладных расходов; E_2 — экономический эффект от досрочного ввода предприятия в эксплуатацию.

Результаты расчета ожидаемого экономического эффекта сравнимых систем подъема для рудных шахт приведены на рис. 2.

Рис. 2. Зависимости суммарного экономического эффекта от использования передвижных проходческих подъемных установок с безредукторным гидравлическим приводом в зависимости от глубины проходки ствола для различных мощностей приводов:

- 1, 2, 3 — суммарный экономический эффект от досрочного ввода предприятия в эксплуатацию для мощности привода подъемных машин соответственно 630, 1000, 2×630 кВт;
- 1', 2', 3' — экономический эффект только от сокращения продолжительности проходки ствола при использовании подъемных машин с гидравлическим приводом для мощности соответственно 630, 1000, 2×630 кВт

Максимальная глубина проходки стволов для подъемных установок с асинхронным приводом (при многолетней навивки каната) ограничена глубиной 1100–1200 (зависимости 1 и 3) и скоростью проходки в пределах от 67 до 75 м/мес, а для подъемных установок с гидроприводом глубина проходки может быть более 1500 м и скорость проходки составляет от 71,5 до 91,5 м/мес (зависимости 2 и 6) при глубине проходки 1100–1200 м.

Оценка результатов выполненного технико-экономического анализа, может заключить, что использование передвижных бобинных проходческих подъемных установок с безредукторным гидравлическим приводом решает задачу увеличения производительности проходческих подъемных установок и скорости проходки вертикальных стволов на 5–16 м/мес в сравнении с существующими подъемными установками с асинхронным приводом. При этом продолжительность проходки стволов снижается в зависимости от глубины и емкости бады на 1–3 месяца.

Экономический эффект за счет снижения себестоимости строительно-монтажных работ, единовременных затрат, эксплуатационных и досрочного ввода предприятия в эксплуатацию составляет при баде 6,5 м³ (зависимость 3) порядка 53 млн руб. на проходку одного ствола глубиной до 1500 м.

Прирост экономического эффекта только за счет снижения продолжительности проходки ствола в интервале глубин 1000–1500 м (зависимость 3) составляет порядка 30 млн руб. (см. рис. 2).

Список литературы

5. Боровский Е.П. Увеличение производительности подъемных установок с безредукторным гидроприводом // Горное строительство. 2014. № 3. С. 40–43.
ТЕХНОЛОГИИ ПЕРЕРАБОТКИ И УТИЛИЗАЦИИ ТЕХНОГЕННЫХ ОБРАЗОВАНИЙ И ОТХОДОВ

УДК 622.7 17:622.271.4

Емельяненко Е.А., Ангелов В.А., Емельяненко М.М.

РАЗРАБОТКА СПОСОБА ФОРМИРОВАНИЯ ТЕХНОГЕННОГО ОБРАЗОВАНИЯ ИЗ ХВОСТОВ ОБОГАЩЕНИЯ МЕДНО-КОЛЧЕДАННЫХ РУД С ЗАДАНИМИ СТРУКТУРНЫМИ ХАРАКТЕРИСТИКАМИ*

В статье предложена новая технология формирования техногенных месторождений посредством заполнения текущими хвостами обогатительной фабрики специальных емкостей, изготовленных из тканого материала марки Geolon (геотекстиль).

Ключевые слова: техногенное месторождение, складирование отходов, хвостохранилище, технология Geotube.

The summary: the new technology of formation of technogenic deposits by means of filling of current tails of concentrating factory in the special capacities made from of a material marks Geolon (geotextile) is offered.

Key words: technogenic deposits, warehousing of a waste, tailing dump, technology Geotube.

Рациональное использование недр и повышение эффективности горного производства предусматривает комплексное извлечение полезных компонентов, утилизацию вторичных минеральных ресурсов на основе применения инновационных технологий и высокопроизводительного горного оборудования.

Длительное освоение медно-колчеданных месторождений Урала привело к образованию на земной поверхности значительного количества отходов переработки руд. Причем, содержание в них ценных компонентов и общий объем накопленных металлов составляют в ряде случаев по многим элементам с перспективными месторождениями (табл. 1), что определяет рассмотрение этих объектов как резервной сырьевой базы действующих горно-обогатительных комбинатов. Однако данные объекты, в основной своей массе, не пригодны для отработки традиционными физико-техническими способами по технологическим, экономическим или горно-геологическим условиям [1].

Эффективная эксплуатация данных месторождений возможна с применением кучного и скважинного выщелачивания. Актуальность применения таких технологий не вызывает сомнений. Однако развитие их в России сдерживается рядом весомых причин: низкой интенсивностью процессов выщелачивания; недостаточной изученностью техногенной сырьевой базы; сложностью управления процессами фильтрации и выщелачивания в техногенных массивах, расположенных на поверхности и подверженных воздействию атмосферных осадков и колебанию температур; отсутствием технологических решений по формированию техногенных массивов с использованием современных геоматериалов.

Анализ сложившейся в горнопромышленном комплексе структуры отходов свидетельствует о том, что до настоящего времени формирование техногенных объектов проводилось и проводится на основе традиционных требований к складированию отходов производства. Формирование хвостохранилищ происходит часто бессистемно, и установить закономерности распределения ценных компонентов при их разработке является сложной и часто технически неразрешимой задачей. Как правило, техногенные образования формируются без учета возможности и целесообразности их эксплуатации в настоящее время или в будущем.

Именно поэтому дальнейшее развитие физико-химической геотехнологии требует принципиально новых подходов к формированию техногенных массивов из отходов горно-обогатительного производства. Для предотвращения развития экстенсивного накопления отходов производства в настоящее время необходимо особое внимание уделять проблеме рационального складирования и сохранения техногенного минерального сырья для повторной эксплуатации в будущем, а также оценке и учету их качества и объема.

Таблица 1

<table>
<thead>
<tr>
<th>Обогатительная фабрика</th>
<th>Содержание элементов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гайская</td>
<td>Медь, т</td>
</tr>
<tr>
<td>Бурябовская</td>
<td>24,84</td>
</tr>
<tr>
<td>Учалинская</td>
<td>89,7</td>
</tr>
<tr>
<td>Сибирская</td>
<td>34,4</td>
</tr>
<tr>
<td>Всего:</td>
<td>239,3</td>
</tr>
</tbody>
</table>

* Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России», госконтракт №14.740.11.1272.
мов. Авторами предлагается инновационный путь решения части этих проблем за счет принципиально нового подхода к формированию техногенных массивов из отходов горно-обогатительного производства. Исходя из этой позиции, были определены основные задачи, требующие первостепенного решения:
– исключение потерь ценных компонентов из складируемых дисперсных отходов обогащения, происходящих за счет природного выщелачивания;
– определение методов контроля, изменение их качественного состава;
– решение вопросов целенаправленной подготовки текущих хвостов обогащения к их повторной переработке в будущем физико-химической геотехнологий;
– создание благоприятных условий для процессов внутриотвального обогащения на геотехнических баррерах;
– изыскание способов увеличения степени их доступности для освоения в будущем.
Техногенные массивы при гидравлической укладке хвостов обогащения формируются в искусственных и естественных емкостях, образованных в результате выемки горных пород либо путем ограждения земной поверхности дамбами. Анализ обзора характеристик хвостохранилищ Южного Урала, представленный в табл. 2, свидетельствует о том, что хвостохранилища занимают значительные площади по отводу земель, а мощность хвостов, складированных в них, достигает 40 м. Такие геометрические параметры определяют необходимость постоянного наращивания дамб и поддержания стабильной гидротехнической ситуации на объектах. Кроме того, данные сооружения являются объектами повышенной опасности, так как при их формировании и функционировании происходит загрязнение воздуха в результате ветровой эрозии, подъема и поверхностного водо-, почвенного покрова на обширных территориях, а иногда при прорыве дамб возникают серьезные техногенные аварии, сопровождающиеся растеканием уложенного в сооружение материала и воды.
Несмотря на огромный ресурсный потенциал, отходы горно-обогатительного производства в России либо утилизируются в составе производственного цикла рудников, выступая в качестве материала для закладки и забуровки выработанного пространства, осипа балластов и дамб, либо используются как сырье для строительства. Широкое распространение в настоящее время находит использование выработанных карьерных пространств и подземных выработок в качестве емкостей для заполнения текущими хвостами обогащения. В свете решения проблем комплексного освоения недр данные решения являются не совсем правильными, поскольку не позволяют использовать огромный потенциал данных ресурсов, что, в свою очередь, приводит к их безвозвратной потере.
Таким образом, проблема размещения дисперсных отходов обогащения в настоящее время представляет собой одну из актуальных и жизненно важных для России экономических и экологических проблем. Решение данной проблемы требует применения новых подходов и методов исследования.
Для решения перечисленных задач проводились исследования в рамках научного направления, заключающегося в формировании из отходов добычи и переработки руд техногенных образований с предварительно заданными и обоснованными структурными и технологическими характеристиками [2].
В рамках этого была выдвинута идея заполнения текущими хвостами обогащения Учаинской обогатительной фабрики емкостей определенного размера, изготовленных из специального материала марки Geolon (геотекстиль). Данный материал состоит из нитей полипропилена (PP) высокой плотности, соединенных в прочную ткань с устойчивым положением нитей относительно друг друга, имеющих уникальную структуру пор, которые обеспечивают удержание шламовых частиц малого размера и отвод из них свободной влаги. Данные емкости изготавливаются из высокопроочной фильтрующей ткани, устойчивой к колоссальным внутренним нагрузкам, механическим повреждениям, воздействию низких температур и ультрафиолетовым лучам.

Таблица 2

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Ед. изм.</th>
<th>БМСК</th>
<th>Учалинский ГОК</th>
<th>Буривское ГОК</th>
<th>Гайский ГОК</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Площадь по отводу земли</td>
<td>га</td>
<td>146,2</td>
<td>23,5</td>
<td>113</td>
<td>31</td>
</tr>
<tr>
<td>2. Мощность вертикальная</td>
<td>м</td>
<td>до 25</td>
<td>до 22</td>
<td>до 21</td>
<td>до 18</td>
</tr>
<tr>
<td>3. Длина</td>
<td>м</td>
<td>1560</td>
<td>470</td>
<td>1700</td>
<td>600</td>
</tr>
<tr>
<td>4. Ширина</td>
<td>м</td>
<td>600</td>
<td>350</td>
<td>750</td>
<td>600</td>
</tr>
<tr>
<td>6. Ориентировочные запасы</td>
<td>млн т</td>
<td>14</td>
<td>4,5</td>
<td>40,8</td>
<td>5,5</td>
</tr>
<tr>
<td>7. Содержание основных элементов:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	медь	цинк	сера	железо	серебро	сурьма	
	%	0,2	0,24	0,22	0,21	0,3	0,7
	%	0,52	0,43	0,63	21,2	26,5	0,5
	%	21,2	26,5	23,1	21,2	26,5	0,5
	%	34,3	28	29,49	23,12	13,87	0,5
	%	0,8	1	0,5	1,2	0,7	0,5
	%	18	20	8,5	10,3	4,0	0,5

Емкости из геотекстиля, заполненные грунтом, применяются при строительстве гидротехнических сооружений – дамб и защитных заграждений, а в последнее десятилетие находят применение при обезвоживании разнообразных по происхождению суспензий (пульпа, шлам, осадок, ил) [3].

При принципиальной возможности внедрения технологии состоит в закачке текущих хвостов обогащения в контейнер по пульповоду, обезвоживания за счет стока свободной воды в течение определенного времени и новых подкачек от 1 до 5 раз пульпы до полного
Заполнения емкости. После заполнения контейнера пульвой в нем начинается процесс консолидации обезвоживаемого материала. Влажность определяется природой помещенного материала, но активная стадия эксплуатации контейнера прекращается при достижении хвостами текучепластичной консистенции (рис. 1).

Рис. 1. Заполнение пульвой контейнера Geotub

Основные преимущества использования емкостей из геотекстиля при активной транспортировке текущих хвостов обогащения:
- промплощадка не требует производства вскрышиных работ, быстро возводится и ликвидируется;
- контейнер не принимает атмосферные осадки в значимом количестве;
- после цикла замораживания-оттаивания происходит сход выкрystаллизованной влаги, и материал может вновь при необходимости приобретать сыпучие свойства;
- контейнеры подлежат многократной укладке, это позволяет расти залежи обезвоженного материала вверх;
- заполнение контейнеров осуществляется насосом или простыми методами гидромеханиации;
- обезвоживание можно производить непосредственно на месте транспортировки или складирования отходов;
- контейнер способен принимать в себя фракции любого размера, твердости и плотности;
- процесс обезвоживания не требует энергопотребления;
- затраты на строительство инфраструктуры минимальны.

Таким образом, предлагаемая технология, являясь достаточно экологически чистым способом обезвоживания жидких отходов (рис. 2), может стать альтернативой аппаратным методам обезвоживания хвостов на обогатительных фабриках. Кроме того, она дает возможность складировать обезвоженный материал в виде высокопористых конструкций, возводить высоконагруженные полигоны, исключить пыление дисперсных отходов обогащения при высыхании и снизить экологическую нагрузку на промплощадки горнобогатительных предприятий и способствовать формированию рекреационных ландшафтов.

Для целенаправленного формирования техногенных месторождений из текущих хвостов обогащения медно-колчеданных руд была выдвинута идея послойной укладки разнокачественных по составу горных пород и использование для их орошения кислых минерализованных рудничных вод. Геотюбы, содержащие сульфидные минералы и прослои карбонатсодержащих пород, позволяют сформировать зоны активной миграции ценных пород на восстановительном геохимическом барьере. По мере необходимости каркас из геотуб можно разобрать, как «конструктор», вскрыть посредством резерв для геотекстила, а ценные компоненты, накопленные при вторичном обогащении, извлекать с использованием традиционных или химических методов обогащения, либо с использованием физико-химических геотехнологий.

Рис. 2. Процесс обезвоживания пульпы

В лаборатории МГТУ им. Г.И. Носова были проведены исследования, направленные на изучение фильтрационных характеристик текущих хвостов обогащения, уложенных в геотекстильный контейнер. Цель проведения серии опытов заключалась в тестировании водоотдающих свойств текущих хвостов обогащения, определение продолжительности обезвоживания, количества и качества получаемого фильтрата.

Для определения фильтрационных характеристик были смоделированы условия, близкие к реальному процессу обезвоживания. В геотекстильную емкость объемом 5 дм³ заливались текущие хвосты обогащения с разным соотношением твердой и жидкой фаз. Процесс фильтрации был разделен на 3 этапа. Продолжительность 1 этапа как наиболее активной фазы отделения жидкости составляла 10 мин. II и III этапа по – 5 мин. По завершению каждого этапа производились замеры отфильтрованной влаги. Результаты данных замеров представлены в табл. 3. По полученным результатам были построены графики изменения объема отфильтрованной влаги во времени (рис. 3). Установлено, что разные соотношения твердой и жидкой фаз не влияют на эффективность обезвоживания хвостов в мешках Geotube, так как основной объем жидкости (80% и более) стекает уже на первом этапе за первые 10 мин.

| Таблица 3 |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Отношение T:Ж | Масса сухих хвостов, г | Объем исходной воды, м³ | Количество воды, отфильтрованный на I этапе, % | Объем воды, отфильтрованный на II этапе | Объем воды, отфильтрованный на III этапе | Объем конечного фильтрата, м³ | Время фильтрации, мин |
| 1:0,5 | 1000 | 500 | 60,0 | 13,0 | 8,0 | 405 | 30 |
| 1:1 | 1000 | 1000 | 80,0 | 6,0 | 4,0 | 900 | 30 |
| 1:2 | 1000 | 2000 | 87,50 | 3,5 | 2,25 | 1850 | 30 |
| 1:3 | 1000 | 3000 | 91,0 | 2,17 | 1,17 | 2830 | 30 |
Технологии переработки и утилизации техногенных образований и отходов

Рис. 3. Зависимость скорости фильтрации воды при разных соотношениях твердой и жидкой фазы

То есть процесс обезвоживания хвостов обогащения в мешках Geotube эффективно протекает при разных соотношениях фаз.

Таким образом, реализация данной идеи позволит целенаправленно формировать разные по составу техногенные месторождения из текущих хвостов обогащения за счет создания многообразных геохимических барьеров. Использование новых геоматериалов позволит формировать кластерные устойчивые геоструктуры, решая при этом проблемы получения в будущем дополнительной товарной продукции за счет вторичного обогащения; сохранения качества отходов путем формирования техногенного месторождения с заданными технологическими параметрами; сокращения площади отчуждаемых земель, занимаемых под хвостохранилища; снижения экологического воздействия на окружающую среду. Таким образом, целенаправленное формирование техногенных месторождений с устойчивой структурой является важной народно-хозяйственной проблемой, решение которой будет определять перспективу и стратегию дальнейшего развития горно-обогатительных предприятий.

Список литературы

3. Принцип работы контейнеров Geotube // w.w.admir-ea.ru.

Библиография

3. The Principle of work of containers Geotube // w.w.admir-ea.ru.

УДК 669.337

Каримова Л.М., Кайралапов Е.Т., Жумацеп К.Ж.

ОПТИМИЗАЦИЯ УСЛОВИЙ ОБЕСПЕЧЕНИЯ АВТОГЕННОСТИ ОБЖИГА МЕДНО-СУЛЬФИДНОГО КОНЦЕНТРАТА

Проведена оптимизация процесса обжига бедных медно-сульфидных концентратов в условиях автогенного режима окисления. Изучена зависимость максимальной температуры автогенного обжига при различных скоростях подачи смеси воздуха и кислорода.

Ключевые слова: медно-сульфидный концентрат, автогенность обжига, кислород.

Key words: copper-sulfide concentrate, autogenous roasting, oxygen.

Использование кислорода воздуха в ряде технологических процессов является недостаточным. Особенно значительные результаты получены при применении воздуха, обогащенного кислородом, к существующим и вновь разрабатываемым процессам в металлургии цветных металлов.

Вовлечение в сферу производства забалансовых медно-сульфидных руд по разрабатываемой авторами технологии связано с получением бедного некондиционного концентрата и его переработкой по схеме «обжиг-выщелачивание», что требует поиска путей обеспечения автогенности процесса. Такая постановка задачи связана с ограниченным содержанием сульфидной серы и необходимостью выбора обжигового аггломерата для обеспечения температурных условий сульфатизации.

Известно, что наиболее энергосберегающим аггломератом является шахтная печь, где создаются условия протикновения обжигаемого материала и отходящих газов. Поэтому лабораторные исследования проводили в шахтной электропечи, имеющей реактор из кварцевой трубы диаметром 40 мм. В качестве используемого материала использовали черновой флотоконцентрат с гранулометрическим составом по классу — 0,074 мм (выход 60,3%), с химическим составом (%): Cu – 4,3; S – 49; Fe – 3,18; CuO – 3,05; Na2O – 1,52; К2O – 1,20. Шихту окатывали водой в грануляторе, имеющем чашу диаметром 0,4 м. Фракции гранул необходимого размера отсевали на ситах. Вовнутрь реактора помещали корзинку с гранулами (навеска 20,0 г) крупностью 8 мм, затем из баллона подавали гелий со скоростью 100 см3/с для вытеснения воздуха до достижения начальной температуры обжига – 400 °C. По мере достижения температуры одновременно прекращали подачу гелия и отключали электрообогрев, подавая смесь воздуха и кислорода при постоянном общем расходе 100 см3/с через ротаметр. Соотношение воздуха и кислорода варьировали в пределах от 0
до 100 см³/с по отношению к кислороду и смесь подавали до снижения температуры 400°C. Затем коробку с гранулями извлекали и охлаждали в экскаторе во избежание доокисления огарка.

Результаты экспериментов обжига медного сульфидного концентриата приведены на рис. 1. На рис. 2 показаны зависимости температуры обжига от времени ее достижения и от расхода смеси воздуха и кислородна.

Коэффициент корреляции R и его значимость t_{R} для частных функций продолжительности и максимальной температуры обжига медного концентриата

<table>
<thead>
<tr>
<th>Функции</th>
<th>R</th>
<th>Условие t_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 570(\frac{5}{6} - e^{-\frac{5}{6}} - e^{-\frac{5}{6}}) - 2,412 \cdot 10^{-5}t^2 + 0,433t - 0,3674$ для $V = 0$ см³/с</td>
<td>0,9774</td>
<td>95,540 > 2</td>
</tr>
<tr>
<td>$t = 605(\frac{5}{6} - e^{-\frac{5}{6}} - e^{-\frac{5}{6}}) - 1,541 \cdot 10^{-5}t^2 + 0,025t - 0,3912$ для $V = 20$ см³/с</td>
<td>0,9906</td>
<td>218,80 > 2</td>
</tr>
<tr>
<td>$t = 620(\frac{5}{6} - e^{-\frac{5}{6}} - e^{-\frac{5}{6}}) - 0,102t^2 + 0,1104t - 0,398$ для $V = 40$ см³/с</td>
<td>0,9890</td>
<td>204,60 > 2</td>
</tr>
<tr>
<td>$t = 670(\frac{5}{6} - e^{-\frac{5}{6}} - e^{-\frac{5}{6}}) - 5,810 \cdot 10^{-5}t^2 + 0,0546t + 0,3748$ для $V = 60$ см³/с</td>
<td>0,985</td>
<td>115,0 > 2</td>
</tr>
<tr>
<td>$t = 690(\frac{5}{6} - e^{-\frac{5}{6}} - e^{-\frac{5}{6}}) - 0,0012t^2 - 0,0308t + 0,1791$ для $V = 100$ см³/с</td>
<td>0,9984</td>
<td>238,7 > 2</td>
</tr>
<tr>
<td>$t_{max} = -0,0064V^2 + 1,877V + 568,28$</td>
<td>0,9337</td>
<td>98,2 > 2</td>
</tr>
<tr>
<td>$t_{max} = 3,701t^2 - 56,581t + 774,43$</td>
<td>0,9089</td>
<td>78,6 > 2</td>
</tr>
</tbody>
</table>

Полученные уравнения (по рис. 2) для описания совокупности действующих факторов обобщаются согласно [2, 3] в виде их произведения с нормировкой по центральному экспериментальному значению, т.е. в данном случае центральная точка является средним значением максимальной температуры 631. Тогда общованное уравнение выразится как

$$t_{max} = \frac{(3,701t^2 - 56,581t + 774,43) \times 1,877V - 0,0064V^2 + 568,28}{631},$$

где t_{max} – максимальная температура обжига.
С помощью обобщенного уравнения (4) находим максимальную температуру обжига, задавая различные значения расхода смеси воздуха и кислорода, а также продолжительность обжига (табл. 2).

Таблица 2

<table>
<thead>
<tr>
<th>(\tau), мин</th>
<th>(V_{O_2}) , см³/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>649,438 – 670,558</td>
</tr>
<tr>
<td>1,5</td>
<td>628,139 – 648,566</td>
</tr>
<tr>
<td>2,5</td>
<td>590,537 – 609,742</td>
</tr>
<tr>
<td>3</td>
<td>574,235 – 592,909</td>
</tr>
<tr>
<td>3,5</td>
<td>559,598 – 577,796</td>
</tr>
<tr>
<td>4</td>
<td>546,626 – 564,403</td>
</tr>
<tr>
<td>4,5</td>
<td>535,32 – 552,729</td>
</tr>
<tr>
<td>5</td>
<td>525,68 – 542,775</td>
</tr>
<tr>
<td>5,5</td>
<td>517,705 – 534,541</td>
</tr>
</tbody>
</table>

Таблица 3

<table>
<thead>
<tr>
<th>(\tau), мин</th>
<th>(V_{O_2}) , см³/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>463,87 – 551,99</td>
</tr>
<tr>
<td>2</td>
<td>507,51 – 646,30</td>
</tr>
<tr>
<td>3</td>
<td>605,58 – 625,45</td>
</tr>
<tr>
<td>4</td>
<td>548,66 – 578,69</td>
</tr>
<tr>
<td>5</td>
<td>569,99 – 545,89</td>
</tr>
<tr>
<td>6</td>
<td>538,15 – 487,13</td>
</tr>
<tr>
<td>8</td>
<td>471,81 – 446,13</td>
</tr>
<tr>
<td>10</td>
<td>415,72 – 442,03</td>
</tr>
<tr>
<td>12</td>
<td>399,8 – 408,24</td>
</tr>
<tr>
<td>15</td>
<td>398,74 – 415,09</td>
</tr>
</tbody>
</table>

Как показывают результаты таблицы, с увеличением расхода смеси воздуха и кислорода максимальная температура закономерно увеличивается, а с увеличением продолжительности обжига уменьшается, так как по мере выгорания серы в концентрате количество выделившегося тепла уменьшается.

По полученным уравнениям температуры от продолжительности обжига (см. рис. 1, табл. 1) возможно рассчитать температуру обжига сульфидных медных концентратов в зависимости от расхода воздуха и кислорода от продолжительности обжига (табл. 3).

Таким образом, проведена широкая вариация условий обжига некондиционных медных сульфидных концентратов при автономном режиме окисления. Установлено, что в интервале температур 400–700°С скорость окисления весьма значительно зависит от кислорода. Увеличение расхода кислорода от 20–100 см³/с ускоряет процесс окисления в 1,5–2 раза по сравнению с окислением воздухом. Во всех случаях оплавления гранул и их спекания не наблюдалось.

Список литературы

2. Мальцев В.П. Математическое описание результатов многофакторного эксперимента, проведенного по методу Зейделя-Гаусса // Вестник АН Каз ССР. 1978. № 4. С. 31–38.

Bibliography

МЕТАЛЛУРГИЯ ЧЕРНЫХ, ЦВЕТНЫХ И РЕДКИХ МЕТАЛЛОВ

УДК 669.162.16
Сибагатуллин С.К., Харченко А.С., Тепых Е.О. и др.

ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ КОКСОВОГО ОРЕШКА РАЗЛИЧНОГО ПРОИСХОЖДЕНИЯ

Представлены результаты исследований прочностных характеристик, реакционной способности и показателей технического анализа коксового орешка различного вида. Орешек, выделенный из вновь испеченного кокса, содержит на 20% больше фракции 19–25 мм по сравнению с полученным путем отсева у доменной печи.

Коксовый орешек сухого тушения имеет более высокую холодную и горячую прочности, повышенное содержание углерода, понизенную реакционную способность по сравнению с орешком мокрого тушения.

The results of researches of strength characteristics, reactivity and indicators of technical analysis of coke nut of various types are presented here. The coke nut, selected from the newly baked coke, contains 20% more fraction of 19–25 mm compared to the coke nut received by dropping from the blast furnace.

The coke nut of dry extinguishing has higher cold and hot strength, increased carbon content, the lower reactivity compared to the coke nut of wet extinguishing.

Key words: coke nut, drainage capacity, coke.

В доменную плавку коксовый орешек может поступать различного вида: выделенный из вновь испеченного кокса или отсевной у печи, сухого или мокрого тушения. От показателей его качества зависит допустимый расход и эквивалент замены кокса [1,2]. В связи с этим определяли показатели технического анализа, ситовый состав, холодную и горячую прочности.

Ситовый состав

Коксовый орешек содержит более 50% фракции 19–25 мм (табл.1). Это выше средних величин эквивалентной по поверхности крупности агломерата и окатышей. Поэтому использование орешка может способствовать улучшению газопроницаемости шихты в верхней части печи [3].

В табл. 1 видно, что орешек, выделенный из вновь испеченного кокса, содержит на 20 % больше фракции 19–25 мм по сравнению с полученным путем отсева у доменной печи.

Холодная прочность

Ее характеризовали структурной прочностью, определяемой по ГОСТ 9521-74, и результатами испытаний в гальтовочном барабане, используемом при вычислении горячей прочности CSR. Полученные данные (табл. 2) свидетельствуют о том, что самой прочной является фракция 25–40 мм. Несколько уступает ей в прочности класс 10–25 мм. Структурная прочность кокса сухого тушения выше, чем мокрого. Среднезвезденные величины структурной прочности металлургического кокса сухого и мокрого тушения составили 80,4 и 78,7 % соответственно. Среднезвезденная структурная прочность скипового кокса сухого тушения составила 79,8 %, мокрого – 78 %, то есть она была меньше прочности орешка.

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ситовый состав коксового орешка различного происхождения</td>
</tr>
<tr>
<td>Вид коксового орешка</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Отсевной из вновь испеченного кокса: сухого тушения</td>
</tr>
<tr>
<td>мокрого тушения</td>
</tr>
<tr>
<td>Отсевной у доменной печи: сухого тушения</td>
</tr>
<tr>
<td>мокрого тушения</td>
</tr>
</tbody>
</table>

Для определения холодной прочности в гальтовочном барабане отбирали пробу исследуемого материала крупностью 19–22,4 мм, массой 0,2 кг, которую помещали в гальтовочный барабан с частотой вращения 20 об/мин. Испытание длилось 30 мин, затем в течение 10 мин на вибрационном грохоте (ситание) отсеивали материал крупностью менее 9,5 мм. Надрешетный продукт вз вещивали и определяли его количество в процентном соотношении от загруженной массы (M95, табл. 3). Для оценки стабильности этого показателя при последующих разрушениях оставляли массу коксового орешка снова поместить в гальтовочный барабан и подвергли его аналоогичному испытанию. Полученный результат представлен в табл. 3 показателем M95,5 (повторно).

<table>
<thead>
<tr>
<th>Структурная прочность кокса по фракциям, %</th>
<th>Вид кокса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фракция, мм</td>
<td>Вновь испеченный</td>
</tr>
<tr>
<td></td>
<td>сухого тушения</td>
</tr>
<tr>
<td>> 80</td>
<td>77,5</td>
</tr>
<tr>
<td>60-80</td>
<td>79,7</td>
</tr>
<tr>
<td>40-60</td>
<td>80,5</td>
</tr>
<tr>
<td>25-40</td>
<td>86,9</td>
</tr>
<tr>
<td>10-25</td>
<td>86,2</td>
</tr>
</tbody>
</table>

Таблица 2

19
Таблица 3

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Вид коксового орешка</th>
<th>Вновь испеченный</th>
<th>Отсевной у доменной печи</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR</td>
<td>Сухое тушение</td>
<td>83,8</td>
<td>80,1</td>
</tr>
<tr>
<td></td>
<td>Мокрое тушение</td>
<td>86,4</td>
<td>84,6</td>
</tr>
<tr>
<td>Mₘₜ</td>
<td>Сухое тушение</td>
<td>90,5</td>
<td>89,9</td>
</tr>
<tr>
<td></td>
<td>Мокрое тушение</td>
<td>91,8</td>
<td>90,4</td>
</tr>
</tbody>
</table>

Из табл. 3 видно, что класс кокса 10–25 мм сухого тушения имеет более высокую холодную прочность по сравнению с этим же классом мокрого тушения. Орешек, выделенный из вновь испеченного кокса, больше истирается по сравнению с орешком из отсева на доменных печах.

Коксовый орешек, испытанный в галтовочном барабане, повторно обладает меньшей истираемостью.

Таблица 4

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Фракция, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>80</td>
</tr>
<tr>
<td>Кокс сухого тушения: CSR, %</td>
<td>30,3</td>
</tr>
<tr>
<td>РСК, см³/(г·с)</td>
<td>0,27</td>
</tr>
<tr>
<td>Кокс мокрого тушения: CSR, %</td>
<td>31,7</td>
</tr>
<tr>
<td>РСК, см³/(г·с)</td>
<td>0,36</td>
</tr>
</tbody>
</table>

В металлургическом коксе сухого тушения значения CSR и CRI составили 58,4 и 30 % соответственно (табл. 5). В коксе мокрого тушения горячая прочность была несколько меньше (56,2 %), реакционная способность выше (31,5 %).

Технический анализ

Влажность кокса определяли по ГОСТ 27588-91, зольность — по ГОСТ 11022-95, содержание летучих по ГОСТ 6382-2001, серы по ГОСТ 8606-93. Полученные результаты анализа приведены в табл. 6 и 7.

Таблица 5

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Металлургический кокс</th>
<th>Коксовый орешек</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Вновь испеченный</td>
<td>Отсевной у доменной печи</td>
</tr>
<tr>
<td>CSR, %</td>
<td>30,1</td>
<td>31,5</td>
</tr>
<tr>
<td>РСК, см³/(г·с)</td>
<td>0,26</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Таблица 6

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Фракция, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>80</td>
</tr>
<tr>
<td>Кокс сухого тушения: A₄</td>
<td>12,4</td>
</tr>
<tr>
<td>W₄</td>
<td>1,4</td>
</tr>
<tr>
<td>C</td>
<td>83,9</td>
</tr>
<tr>
<td>S</td>
<td>0,48</td>
</tr>
<tr>
<td>Кокс мокрого тушения: A₄</td>
<td>12,9</td>
</tr>
<tr>
<td>W₄</td>
<td>1,4</td>
</tr>
<tr>
<td>C</td>
<td>83,34</td>
</tr>
<tr>
<td>S</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Таблица 7

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Фракция, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>80</td>
</tr>
<tr>
<td>Кокс сухого тушения: A₄</td>
<td>12,4</td>
</tr>
<tr>
<td>W₄</td>
<td>1,4</td>
</tr>
<tr>
<td>C</td>
<td>83,9</td>
</tr>
<tr>
<td>S</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Вестник МГТУ им. Г. И. Носова. 2012. № 1.
Согласно табл. 7 с уменьшением крутизны кокса в нем увеличивается содержание золы летучих, повышается вязкость, уменьшается содержание углерода.

Кокс класса 10–25 мм по сравнению с металлургическим коксом имеет пониженное содержание углерода, повышенное – влаги, золы и летучих. Орешек сухого тушения по сравнению с орешком мокрого тушения обладает меньшим содержанием золы, летучих, серы и большим – углерода.

Заключение

Коксовый орешек сухого тушения имеет более выскокую холодную и горячую прочность, повышенное содержание углерода, пониженную реакционную способность по сравнению с орешком мокрого тушения.

Орешек, выделенный из вновь испеченного кокса, содержит на 20% больше фракции 19–25 мм по сравнению с полученным путем отсева у доменной печи.

Кокс класса 10–25 мм по сравнению с металлургическим коксом обладает более высокой холодной прочностью, повышенной реакционной способностью и пониженной горячей прочностью.

Список литературы

Bibliography

газов от диоксида серы (аммиачный, содовый, магнезитовый и др.) позволяют получать ценные попутные продукты (серьную кислоту, жидкую SO₂, удобрения). Однако эти методы экономически целесообразно использовать только при относительно высоких концентрациях SO₂ в очищаемых газах. При низких концентрациях улавливание SO₂ более целесообразно производить с применением известняка – доступного и дешевого реагента.

Наиболее подходящими аппаратами для очистки агломерационных газов являются полые форсуночные скрубберы, имеющие небольшое гидравлическое сопротивление, что позволяет очищать газы от SO₂ без установки дополнительных тягодутьевых средств. Кроме того, полые форсуночные скрубберы отличаются простотой конструкции и надежностью в работе.

Основными факторами, определяющими эффективность и технико-экономические показатели работы полых форсуночных скрубберов, является скорость потока газа в скруббере, плотность орошения, дискретный состав диспергируемой поглощающей жидкости, высота активной (орощаемой) зоны аппарата [2].

Наибольшее влияние на степень очистки газа оказывает плотность орошения, наименьшее – давление жидкости перед форсунками, поэтому для улучшения очистки газа целесообразно увеличивать расход жидкости, а не ее давление, которое должно составлять 1,5–2 атм, что обеспечивает нормальную работу центробежных форсунок.

Таким образом, в полых форсуночных скрубберах можно обеспечить очистку газов от SO₂ на 90 % и более путем применения суспензии известняка, однако для этого требуется значительный расход воды, используемой для приготовления этой суспензии.

Массовый расход аборбента (L) находится по уравнению [1]:

\[L = \frac{Q}{Y_1 - Y_2}, \]

где \(Q \) – расход газовой смеси, \(m^3/c \); \(Y_1, Y_2 \) – соответственно начальная и конечная концентрация загрязняющего вещества в газовой смеси, кг/м³ газа; \(X_0, X_1 \) – соответственно начальная и конечная концентрация загрязняющего вещества в аборбенте, кг/м³ аборбента, \(X_1 = 0 \).

С целью оптимизации работы сероулавливающих установок были проведены исследования по определению зависимости скорости движения капель раствора известкового молока в скруббере при аборбции диоксида серы.

Образующиеся при распылении жидкости капли имеют значительную начальную скорость, соответствующую скорости струи, из которой они образовались. Постоянная скорость падения капли (скорость витания):

\[u = \sqrt[3]{\frac{4gd(\rho_m - \rho_r)}{3\rho_r}}, \]

где \(d \) – диаметр капли; \(\rho_m \) и \(\rho_r \) – плотности жидкости и газа, кг/м³; \(\varepsilon \) – коэффициент сопротивления.

По литературным данным при плотности орошения в абсорбере 3–6 дм³/с, что соответствует расходу орошающей жидкости 20–40 м³/ч, можно принимать \(\varepsilon = 1,5–1,65 \). Тогда скорость витания капли будет колебаться в пределах от 0,25 до 1,45 м/с.

При использовании форсунок грубого распыла образуются капли диаметром 0,1–1,0 мм. Зависимость скорости витания капли от их диаметра показана на графике.

С увеличением диаметра капель скорость их осаждения возрастает, но при этом уменьшается коэффициент массопередачи.

При этом скорость подачи газа не должна превышать скорость движения жидкости, т.к. при этом будет меняться направление движения капель на обратное, что увеличит каплеунос. Поэтому скорость газа не должна превышать 1,45 м/с.

Аппарат для очистки газов от диоксида серы, орошаемый известковым раствором, является наиболее перспективным. Однако возникают такие проблемы, как отложение продуктов реакции на рабочих поверхностях скруббера.

При решении этих проблем можно использовать добавки в поглощающий раствор. В качестве добавок могут выступать природные и аминовые кислоты, такие как триглицериды, винная и яблочная кислоты.

Имеются две важные модификации процесса улавливания диоксида серы с использованием соединений кальция. В одной из них применяют смесь извести со щелочной летучей золой, а в другой – смесь известняка со щелочной летучей золой. В рассматриваемых модификациях известь или известняк используют как добавки для поддержания рН шлама на необъективном уровне. Физико-химические и химические процессы, протекающие при этом, идентичны.

В известковых и известняковых системах были испытаны две важные добавки: диаспировая кислота и тиссульфат натрия. Было доказано, что эти добавки уменьшают образование отложений, повышают эффективность удаления диоксида серы и минимизируют колебания рН при изменении концентрации сернистого ангидрида. Ещё одна важная добавка – оксид магния. Извест с оксидом магния оказывается отличным абсорбентом диоксида серы. Она даёт наименьшее образование сульфатдеполярных отложений при высокой эффективности улавливания сернистого ангидрида.

Эти технические жидкости обладают большой буферностью, что объясняет минимальное образование отложений [3].
Так, при очистке аглопов от диоксида серы в полых форсуночных скрубберах сероулавливающих установок ОАО «ММК» концентрация извлеченных веществ в газе колеблется в пределах от 0,8 до 0,22 г/м³, а рН – от 8,6 до 9,0. При введении мочевины в известковое молоко протекает реакция:

\[
\text{Ca(OH)}_2 + \text{CO}_2 = \text{CaCO}_3 + \text{H}_2\text{O}
\]

\[
\text{CaCO}_3 + \text{H}_2\text{NCONH}_2 = \text{Ca}[\text{NCONH}_2] + \text{H}_2\text{O} + \text{CO}_2
\]

Согласно этим реакциям при концентрации извести в известковом молоке 40 г/л концентрация мочевины в поглощающей жидкости должна быть не менее 34,42 г/л.

При уменьшении концентрации известкового молока снижается образование карбонатов. В этом случае используется коэффициент, который был определен из соотношения концентрации мочевины к концентрации известкового молока, равный 0,8105.

Для защиты внутренней поверхности абсорбера от коррозионного воздействия среды рекомендуется гуммировать эти поверхности антикоррозийными составами на основе резины, а скруббера, циркуляционные сборники, шламовые сборники, сборники известкового молока, каплеуловители, газоходы чистого газа должны быть из химически стойкого слоистого пластика.

Список литературы

Bibliography

ОПРЕДЕЛЕНИЕ ДЛИНЫ ЛУНКИ ЖИДКОГО МЕТALLА
В НЕПРЕРЫВНОЛИТЫХ СЛЯБАХ ИЗ ТРУБНОЙ СТАЛИ
С ИСПОЛЬЗОВАНИЕМ ЭФФЕКТА
«ИСКУССТВЕННОГО РАЗДУТИЯ» ЗАГОТОВКИ

Определение длины лунки жидкого металла в непрерывнолитых слабах из трубной стали с использованием эффекта «искусственного раздутия» заготовки.
Проведены опыты по «искусственному раздутию» непрерывнолитого слита из трубной стали. Фактическая длина лунки жидкого металла оказалась больше расчетных значений.

Ключевые слова: непрерывнолитой слит, луника жидкого металла, эффект «искусственное раздутие».

Детерминирование длины слитка на условные материалы слитков, используемых для труб и труб. К листу предъявляются высокие требования по однородности свойств металла и отсутствию дефектов. Для их выполнения стан должен снабжаться высококачественной непрерывнолитой заготовкой толщиной 300 мм. Слабовая заготовка отливается в кислородно-конверторном цехе на одночальной МНЛЗ криолинейного типа с вертикальным участком машины производства ВЗКого «SMS Demag». На данной машине с целью улучшения качества металла осевой зоны слитка используется яйковое обжатие непрерывнолитой заготовки [1, 2]. Эффективность яйкового обжатия заготовки существенным образом зависит от правильности выбора места приложения обжатия по диаметру технологического МНЛЗ. Сравнивались рекомендации, предложенные оборудованием выбора ширины заготовки МНЛЗ для осуществления яйкового обжатия заготовки существенным образом. По расчетным данным, выдываемым динамической системой управления вторичным охлаждением непрерывнолитой заготовкой, определяется номер сегмента зоны вторичного охлаждения (ЗВО), в котором заканчивается затвердевание металла. Яйковое обжатие слитка рекомендуется производить в предыдущих двух сегментах горизонтального участка МНЛЗ (всегда ЗВО состоит из пяти таких сегмента). С целью проверки правильности информации о длине лунки жидкого металла внутри слитка, рассчитываемой ЭВМ, ее фактическую протяженность были проведены исследования с использованием эффекта «искусственного раздутия» слитков заготовки.

Сущность этого метода состоит в следующем:
- вначале производится снижение скорости вытягивания слитка из кристаллизатора для того, чтобы длина лунки жидкого металла внутри заготовки уменьшилась и конец лунки оказался перед сегментом, в котором будет искусственно вызывать раздутие слитка;
- после этого осуществляется открытие данного сегмента – при помощи гидроцилиндров все верхние ролики сегмента (шесть непрерывных и один центральный приводной) приподнимаются на несколько миллиметров. В результате этого сила взаимодействия роликов на слиток резко снижается до некоторого минимального значения, фиксируемого динамической системой управления вторичным охлаждением непрерывнолитой заготовкой, при этом приводной ролик прокручивается вхолостую;
- затем скорость вытягивания заготовки из кристаллизатора повышается с целью увеличения протяженности лунки жидкого металла. Вследствие этого конец лунки перемещается в открытый сегмент и проходит раздутие слитка. При этом сила воздействия роликов на слиток входит в сегмент резко возрастает. В данный момент времени доля жидкого фаза внутри заготовки составляет около 80 % [3] и соответствует «границе выливаемости», при которой еще возможна подпитка двухфазной зоны расплавом. Зная расстояние от поверхности жидкого металла в кристаллизаторе до входа в открытый сегмент, можно определить фактическую длину лунки жидкого металла в заготовке. При продвижении раздувшейся части слитка по сегменту круглый момент на приводной ролик возрастает;
- для прекращения раздутия слитка скорость вытягивания заготовки снижается, протяженность лунки уменьшается, ее конец перемещается из открытого сегмента, сегмент медленно закрывается и исследование заканчивается.

С целью уточнения месторасположения конечной части лунки жидкого металла в непрерывнолитых
сляхах разной толщины были проведены опыты с «искусственным раздутьем» заготовок в процессе разливки трубной стали четырьмя плавками. Данные о химическом составе разливаемого металла представлены в табл. 1.

Значения основных параметров разливки трубной стали приведены в табл. 2.

Таблица 1

<table>
<thead>
<tr>
<th>Химический элемент</th>
<th>Условный номер плавки (опыта) / Марка стали</th>
<th>A / K60</th>
<th>B / K60</th>
<th>C / D32</th>
<th>D / D32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углерод</td>
<td>0,07</td>
<td>0,07</td>
<td>0,10</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>Кремний</td>
<td>0,26</td>
<td>0,35</td>
<td>0,23</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>1,66</td>
<td>1,66</td>
<td>0,96</td>
<td>0,94</td>
<td></td>
</tr>
<tr>
<td>Сера</td>
<td>0,002</td>
<td>0,003</td>
<td>0,003</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Фосфор</td>
<td>0,009</td>
<td>0,011</td>
<td>0,014</td>
<td>0,009</td>
<td></td>
</tr>
<tr>
<td>Хром</td>
<td>0,026</td>
<td>0,045</td>
<td>0,053</td>
<td>0,030</td>
<td></td>
</tr>
<tr>
<td>Никель</td>
<td>0,185</td>
<td>0,269</td>
<td>0,042</td>
<td>0,026</td>
<td></td>
</tr>
<tr>
<td>Медь</td>
<td>0,181</td>
<td>0,172</td>
<td>0,069</td>
<td>0,033</td>
<td></td>
</tr>
<tr>
<td>Алюминий</td>
<td>0,025</td>
<td>0,040</td>
<td>0,038</td>
<td>0,045</td>
<td></td>
</tr>
<tr>
<td>Титан</td>
<td>0,015</td>
<td>0,014</td>
<td>0,003</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>Азот</td>
<td>0,008</td>
<td>0,005</td>
<td>0,005</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Ниобий</td>
<td>0,048</td>
<td>0,047</td>
<td>0,026</td>
<td>0,023</td>
<td></td>
</tr>
<tr>
<td>Ванадий</td>
<td>0,048</td>
<td>0,053</td>
<td>0,006</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>Кальций</td>
<td>0,0013</td>
<td>0,0017</td>
<td>0,0020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Водород (ppm)</td>
<td>2,4</td>
<td>2,5</td>
<td>2,5</td>
<td>2,4</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Параметр разливки</th>
<th>Условный номер плавки (опыта)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Размеры поперечного сечения сляба, мм: толщина</td>
<td>293,8</td>
</tr>
<tr>
<td>ширина</td>
<td>2500</td>
</tr>
<tr>
<td>Скорость вытягивания сляба из кристаллизатора, м/мин</td>
<td>0,8</td>
</tr>
<tr>
<td>Температура металла в промежуточном ковше, °С</td>
<td>1538</td>
</tr>
<tr>
<td>Температура ликвидус стали, °С</td>
<td>1517</td>
</tr>
<tr>
<td>Температура солидус стали, °С</td>
<td>1482</td>
</tr>
<tr>
<td>Номера сегментов ЗВО с мягким обжатием сляба</td>
<td>12, 13</td>
</tr>
<tr>
<td>Толщина сляба до и после обжатия, мм</td>
<td>305,6</td>
</tr>
<tr>
<td>Величина мягкого обжатия, мм</td>
<td>6,3</td>
</tr>
</tbody>
</table>

В качестве характерного примера рассмотрим условия проведения опыта A. В процессе разливки стали скорость вытягивания сляба из кристаллизатора была понижена с 0,80 до 0,75 м/мин, в результате чего протяженность луники жидкого металла снизилась и оказалась меньше, чем расстояние от поверхности жидкого металла в кристаллизаторе до входа в тринадцатый сегмент ЗВО МНЛЗ. После этого был открыт тринадцатый сегмент. На рис. 1 показано изменение силы воздействия роликов тринадцатого сегмента на слаб в процессе разливки.

![Рис. 1. Изменение силы воздействия роликов на слаб в тринадцатом сегменте ЗВО МНЛЗ](image)

Из него видно, что при наличии полностью затвердевшего сляба сила воздействия приподнятых роликов открытого сегмента на заготовку минимальна и равна примерно 200 кН.

Скорость вытягивания заготовки повысили до 0,80 м/мин для того, чтобы луника жидкого металла переместилась в открытый сегмент. Произошло раздутье сляба на 2,74 мм (с 305,25 до 307,99 мм), в результате чего сила воздействия роликов на слаб (см. рис. 1) возросла до 1470 кН, то есть в 7,35 раза. Таким образом, на входе в тринадцатый сегмент – на удалении 27,089 м от поверхности жидкого металла в кристаллизаторе располагалась заготовка, имеющая долью жидкого металла, равную примерно 0,8. В ней еще была возможность подпитка расплавом двухфазной области, что и вызвало образование раздутья сляба. На рис. 2 приведены расчетные данные о внутреннем строении слябовой непрерывнолитой заготовки, полученные динамической системой управления вторичным охлаждением непрерывнолитой заготовкой.

Из рис. 2 следует, что расчетное значение длины луники с долью жидкого металла, равной 0,8, составляло 25,8 м, что было в 1,135 раз меньше, чем расчетная протяженность луники жидкого металла (29,29 м). Исходя из предположения, что в реальной лунике это соотношение сохраняется, можно определить ее фактическую протяженность. Для этого необходимо учесть расстояние до входа в тринадцатый сегмент (27,089 м) в 1,135 раз и получить величину, составляющую 30,75 м.
Данные о протяженности лункки жидкого металла в слабой непрерывной заготовке

<table>
<thead>
<tr>
<th>Номер опыта</th>
<th>Протяженность лункки жидкого металла, м</th>
<th>Разность между фактической и расчетной величинами, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29,29</td>
<td>30,75, 1,46</td>
</tr>
<tr>
<td>B</td>
<td>29,93</td>
<td>31,43, 1,50</td>
</tr>
<tr>
<td>C</td>
<td>28,15</td>
<td>28,86, 0,71</td>
</tr>
<tr>
<td>D</td>
<td>27,86</td>
<td>28,56, 0,70</td>
</tr>
</tbody>
</table>

Для устранения выявленных различий между фактическими и расчетными значениями длины лункки жидкого металла внутри слабя необходимо внесение корректирующих поправок в модель динамической системы управления вторичным охлаждением заготовки.

Список литературы

Bibliography

Анализ причин брака проводился по разработанной нами диаграмме, устанавливающей причинно-следственную связь факторов технологического процесса отливки и параметра качества «образование закрытой усадочной раковины в теле отливки» для метода ЛВМ (рис. 2).

Для проведения расчетов в СКМ ЛП LVM Flow в соответствии с рассчитанными размерами ЛПС построены 3D-модели различных конструкций отливок с ЛПС, конвертированные в необходимый формат LVM Flow. При построении 3D-моделей использовалась программа 3D моделирования SolidWorks 2007. При моделировании процессов затвердевания отливки задавались следующие начальные условия: температура залывки – 1630°C, в качестве материала облочки использовался электрокорунд и плавленый кварц с начальной температурой 900°C, количество слоев облочки – тридцать, формовка – без опорного наполнителя, расчёт велся при размере ячейки 3,00 мм, граничные условия – излучение в среду с температурой 20°C кроме нижней плоскости формы, граничащей с материалом пола в цехе. Результаты моделирования в соответствии с действующей на ВМЗ технологией представлены на рис. 5.

Анализ влияния способа подвода металла в форму на качество отливки показал: 1) вариант ЛПС для отливки «корпус», применяемый в ФГУП «ВМЗ», не позволяет получить отливку бездефектной; 2) применение всех предложенных нами вариантов ЛПС также приводит к образованию в отливке усадочных дефектов и крупных областей микропористости. Анализ влияния свойств формы (опорного наполнителя и количества слоев огнеупорной облочки) дал следующие результаты: 1) применение в форме шамотного наполнителя приводит к увеличению усадки по сравнению с вариантом, когда опорный наполнитель отсутствует в форме; 2) увеличение количества слоев облочки дает практически идентичные результаты по сравнению с базовым проектом. Принудительное охлаждение формы сжатым воздухом перед заливкой, т.е. создание градиента температур по высоте, как один из вариантов, позволяющих оценить влияние температурного состояния керамической облочки на качество литя, показал (рис. 6), что использование принудительного охлаждения формы перед заливкой приводит к значительному понижению качества отливки «корпус». Поэтому, по-видимому, основное влияние на качество отливки оказывает непосредственно температура прокалки облоочки.
ЛИТЕЙНОЕ ПРОИЗВОДСТВО

Рис. 6. Усадка при различных температурных режимах формы

На рис. 7 представлены результаты моделирования при различных температурах прокалки.

Рис. 7. Усадка при различных температурах прокалки

Для выявления причин, по которым при температуре формы 1000°С наблюдается полное отсутствие усадочных дефектов в отливке, при помощи СКМ ЛП LVM Flow проведено сравнение температурно-временных полей при базовом варианте технологии и при повышенной до 1000°С температуре формы (рис. 8).

Температура оболочки

900°С 1000°С 900°С 1000°С

Рис. 8. Сравнение температурно-временных полей при температуре оболочки 900 и 1000°С (1 (а) и 1,5 (б) мин с начала затвердевания)

Сделано предположение, что причиной устранения дефектов в нижней части отливки при повышении температуры формы до 1000°С является более позднее затвердевание тонкой стенки вертикального фланца, питающей тепловые узлы в нижней части, вследствие разогрева оболочки на данном участке при прокалке до более высокой температуры, чем в базовом варианте. На рис. 8 видно, что как при температуре оболочки 900°С, так и при 1000°С через 1 мин после начала затвердевания температура металла в нижней части отливки составляет порядка 1442°С. Однако при повышенной температуре оболочки температура металла в тонкой вертикальной стенке на 9° выше, чем при базовом варианте. При этом в этот же момент времени в тонкой стенке затвердевает меньшее количество металла по сравнению с базовой технологией. Количество жидкной фазы во втором варианте на 21–25% больше. Спустя 1,5 мин после начала затвердевания при базовом варианте температура металла в тонких стенках понижается до 1390°С, т.е. ниже температуры ликвидуса. Металл в этих участках вертикального фланца полностью затвердевает, при этом в нижней части находится значительное количество жидкой фазы (от 88 до 98%), т.е. образуется локальная область жидкого металла в тепловых узлах отливки, которая при дальнейшем затвердевании приводит к образованию дефектов. При температуре оболочки 1000°С наблюдается отклонение температуры, что влечет за собой ухудшение качества отливки.

Для подтверждения сделанного предположения при помощи СКМ ЛП LVM Flow построены температурно-временные зависимости (рис. 9). Для этого в тонких стенках вертикального фланца были установлены виртуальные термопары. Установлено, что в тонкой вертикальной стенке отливки при базовом варианте затвердевание заканчивается через 100 с, а при температуре формы 1000°С – через 150 с. Это связано с более быстрым затвердеванием нижней части отливки при более высокой температуре. На рис. 9 видно, что как при температуре оболочки 900°С, так и при 1000°С через 1 мин после начала затвердевания температура металла в нижней части отливки составляет порядка 1442°С. Однако при повышенной температуре оболочки температура металла в тонкой вертикальной стенке на 9° выше, чем при базовом варианте. При этом в этот же момент времени в тонкой стенке затвердевает меньшее количество металла по сравнению с базовой технологией. Количество жидкной фазы во втором варианте на 21–25% больше. Спустя 1,5 мин после начала затвердевания при базовом варианте температура металла в тонких стенках понижается до 1390°С, т.е. ниже температуры ликвидуса. Металл в этих участках вертикального фланца полностью затвердевает, при этом в нижней части находится значительное количество жидкой фазы (от 88 до 98%), т.е. образуется локальная область жидкого металла в тепловых узлах отливки, которая при дальнейшем затвердевании приводит к образованию дефектов. При температуре оболочки 1000°С наблюдается отклонение температуры, что влечет за собой ухудшение качества отливки.
Таким образом, в результате работы предложены технологические рекомендации изготовления отливки «корпус» методом ЛВМ, при соблюдении которых, по нашему мнению, возможно отсутствие дефектов:
1) для подвода металла использовать шестой тип ЛПС;
2) температура заливки 1630°С;
3) количество слоев оболочки – 13;
4) первые два слоя выполняются из электрокорунда, а последующие одиннадцать из плавленого кварца;
5) температура прокалки формы 1000°С;
6) формовка – без опорного наполнителя;
7) заливка происходит непосредственно после извлечения формы из прокалочной печи (без выдержки на воздухе и обдува сжатым воздухом).

Рекомендации по повышению температуры прокалки с точки зрения энергосбережения ведут к увеличению затрат на энергоносители. Компенсировать увеличение количества используемой энергии в технологическом цикле получения отливки можно за счет снижения времени изготовления отливки, поэтому хорошим направлением для дальнейшего изучения является возможность уменьшения количества слоев огнеупорной оболочки при температуре прокалки 1000°С.

Список литературы
2. Воронин Ю.Ф. Атлас литейных дефектов. Черные сплавы / Ю.Ф. Воронин, В.А. Камаев. М., 2005

Bibliography
УДК 621.735.32-539.389.2
Герасимов В.Я., Парьшев Д.Н.

ПРОЯВЛЕНИЕ ЭФФЕКТА БАУШИНГЕРА ПРИ ОСАДКЕ СТАЛЬНЫХ ЦИЛИНДРОВ

Установлены закономерности изменения твердости и удельного электрического сопротивления при ступенчатой осадке цилиндрических заготовок из калиброванной стали 20. Получено экстремальное изменение контролируемых характеристик металла, вызванное изменением знака пластической деформации и проявлением эффекта Баушингера при их минимальных значениях со степенью деформации 0,07-0,10.

Ключевые слова: осадка, стальные цилиндры, эффект Баушингера, твердость, удельное электрическое сопротивление, степень деформации.

The study determines objective laws of solidity and electrical resistivity during consecutive settling of cylindrical work pieces made of standardized steel 20. The extreme change of controlled metal characteristics caused by change of mark of plastic deformation and development of Bauschinger effect was received at their minimal values at deformation degree 0.07-0.10.

Ключевые слова: осадка, стальные цилиндры, Bauschinger effect, solidity, electrical resistivity, deformation degree.

Эффект Баушингера проявляется при изменении знака холодной пластической деформации и характеризуется частичным разупрочнением металла [1,2]. Необходимо отметить, что эффект Баушингера может локализоваться в ограниченном объеме металла, что может быть выявлено по изменению твердости. Изменяются также интегральные характеристики, например плотность, удельное электрическое сопротивление, магнитная проницаемость, электропроводность.

В настоящей работе установлены основные закономерности изменения свойств деформируемого и упрочняемого металла при ступенчатой осадке стальных цилиндров из холоднотянутой стали. В экспериментах использовали калиброванные прутки из стали 20, которые были получены волочением в конической матрице с обжатием ε₀=2n (d₁/d₀)=0,31 (d₀ и d₁ – диаметры исходного и прокатного прутка). Из них изготовили цилиндрические образцы с отношением высоты к диаметру h₀/d₀ =2,0, что позволило осуществить деформационный процесс без потери устойчивости.

Степень деформации скатия на каждой ступени определяется по формуле ε₀=ℓ₁ n (h₀/h₁) (h₀ и h₁ – высота исходного и осаженного цилиндра) и изменяется ступенями, что позволяет оценивать поэтапное накопление разупрочняющего эффекта и структурные изменения в деформированном объеме металла.

На первом этапе исследования определяли среднее значение твердости по Виккерсу HV,10/15 в меридиональной плоскости шлифов, изготовленных из осаженных цилиндров. При этом зоны контроля 1 и 2 соответствуют продольной оси деформированных образцов и их периферийным зонам.

Результаты обобщены и показаны на рис. 1 в виде графических зависимостей 1 и 2, соответствующих выделенным зонам контроля твердости на шлифах.

На втором этапе исследования определяли электрическое сопротивление R для образцов объемom V и находили удельное электросопротивление ρ= R/V (Ом/см²).

При этом использовали двойной мост Томсона, с помощью которого можно определять сопротивление образца с точностью до 0,0001 Ом [2].

![Diagram](https://via.placeholder.com/150)

Рис. 1. Изменение твердости на продольной оси (кривая 1) и в периферийной зоне (кривая 2) при осадке цилиндров из калиброванной стали 20

Результаты показаны на рис. 2 в виде интегральных кривых 1 и 2, характеризующих изменение физических свойств деформируемого металла, получившего предварительное упрочнение при волочении прутков. Время естественного старения составило 1 и 14 сут, что позволило выявить изменения в структурном состоянии металла. Необходимо отметить, что при обжатии ε₀ = 0,31 достигается интенсивное упрочнение металла в центральной зоне прокатных прутков – вблизи продольной оси вследствие деформаций растяжения [3].
В процессе пластического сжатия образцов изменяется знак деформации и это проявляется в частичном разупрочнении металла. Причиной являются дислокационные барьеры при протекании через образец постоянного тока.

Получено также экстремальное изменение электрического сопротивления единичных объемов металла с минимальными значениями в диапазоне экстремальной степени деформации сжатия 0,07–0,10, которые оказываются близкими к значениям по твердости (см. рис. 1).

При увеличении времени старения металла от 1 до 14 сут уменьшается удельное электрическое сопротивление деформированного металла, что объясняется переходом атомов углерода и азота из равномерного распределения в твердом растворе к скоплениям на дислокациях.

В целом можно отметить наибольшую эффективность, доступность и простоту метода удельного электрического сопротивления, когда не требуется трудоемкое изготовление шлифов и многократное измерение твердости. Благодаря высокой точности контроля появляется возможность достоверной оценки структурного состояния металла, его упрочнения и изменения разупрочняющего эффекта на технологических операциях осадки и высадки цилиндрических заготовок. Поэтому можно рекомендовать данный метод при проведении металлофизических исследований в процессах холодной деформационной обработки металла с изменением знака пластической деформации.

УДК 621.777

Горохов Ю.В., Осипов В.В., Солодко И.В., Катрюк В.П.

РАСЧЕТТЕМПЕРАТУРЫ ПОЛЕЙДЕФОРМАЦИОННОЙ ЗОНЫ ПРИ НЕПРЕРЫВНОМ ПРЕССОВАНИИ МЕТАЛЛОВ МЕТОДОМ КОНФОРМ

Определен характер распределения температуры прессуемого металла в деформационной зоне при непрерывном прессовании способом Конформ путем решения методом вариационного исчисления уравнений стационарной теплопроводности, учитывающих тепловыделение и конвекцию тепла в процессе пластической деформации.

Ключевые слова: непрерывное прессование, совмещенные процессы, метод конформ, контейнер, инструмент, металл, температурное поле, теплопроводность, распределение температуры, деформационная зона

Character of distribution of temperature of the pressed is defined threw in a deformation zone at continuous pressing of Conform by the way by the decision a method of calculus of variations of the equations of the stationary heat conductivity considering a thermal emission and a convection of heat in the course of plastic deformation.

Ключевые слова: непрерывное прессование, совмещенные процессы, метод конформ, контейнер, инструмент, металл, температурное поле, теплопроводность, распределение температуры, деформационная зона

Key words: continuous extrusion, concurrent processes, method conform, container, tool, metal, temperature field, heat conductivity, temperature distribution, deformation zone.
В последние годы в области теоретических и техноло-гических исследований процессов производства фасонных профилей из цветных металлов все большее внимание уделяется разработке способов непре-рывного прессования. Реализация схем непрерывного прессования осуществлена на различных установках, отличающихся конструкцией, технологическими возможностями и производительностью [1, 2]. Наиболее применение в прессовом производстве получили устройства, действие которых основано на использовании сил контактного трения между заготовкой и подвижной частью разъемного контейнера для выдавливания металла в отверстие матрицы, установленной в неподвижной части контейнера (рис. 1).

Рис. 1. Схема устройства для непрерывного прессования с горизонтальной осью вращения колеса: 1 – заготовка; 2 – ручьи; 3 – вращающееся колесо; 4 – матрицодержатель; 5 – матрицы, 6 – упор

Этот способ непрерывного прессования, предложенный в 1971 году Д. Грином, получил название Конформ и осуществляется следующим образом: прутковая заготовка 1 подается в разъемный контейнер, образованный сопряжением ручьи 2 приводного колеса 3 с неподвижным сегментом 4 и упором 6, перекрывающим сечение ручья. По мере вращения колеса 3 пруток 1 под действием сил трения по поверхности ручья 2 продвигается к матрице 5 и выдавливается в ее отверстие. При этом пруток разогревается до температуры, величина которой зависит от свойств прессуемого металла и технологических факторов процесса. Осуществление непрерывного прессования металла при оптимальном температурно-скоростном режиме обеспечивает высокие показатели качества пресс-изделий, стойкости прессового инструмента и оснастки, поэтому определение характера распределения температуры прессуемого металла в очаге деформации является актуальной задачей при проектировании технологического процесса прессования способом Конформ. В результате изучения теплового эффекта при непрерывном прессовании предложен ряд теоретических и экспериментальных формул для определения температуры металла в деформационной зоне [3]. Дальнейшее развитие методов решения тепловой задачи при непрерывном прессовании металлов способом Конформ целесообразно проводить на основании анализа энергетического состояния очага пластической деформации с применением принципа вариационного исчисления для определения уравнений теплопроводности, учитывающих тепловыделение и конвекцию тепла в процессе пластической деформации.

\[
\frac{\partial}{\partial t}(\rho c\theta) = \lambda \nabla^2 \theta + \operatorname{grad} \lambda \cdot \operatorname{grad} \theta + TH - \rho c v \operatorname{grad} \theta. \tag{1}
\]

где \(c, \rho, \lambda\) – соответственно удельная теплоемкость, плотность и коэффициент теплопроводности среды; \(v\) – скорость перемещения частиц среды; \(\nabla^2\) – оператор Лапласа; \(T\) – температура; \(H\) – интенсивность касательных напряжений; \(\rho c v\) – интенсивность скоростей деформаций сдвига.

Если \(c, \rho, \lambda\) – постоянные, то уравнение (1) примет вид

\[
\rho c v \frac{\partial \theta}{\partial t} = \lambda \nabla^2 \theta + TH - \rho c v \operatorname{grad} \theta. \tag{2}
\]

В случае стационарного изотермического процесса деформирования, когда температура от времени не зависит, уравнение (2) принимает вид

\[
\lambda \nabla^2 \theta + TH - \rho c v \operatorname{grad} \theta = 0. \tag{3}
\]

На рис. 2 представлена схема деформационной зоны при непрерывном прессовании Конформ, полученная на основании изучения особенностей пластического течения разноцветного пластилина [4] при его выдавливании в отверстие матрицы из разъемного контейнера, имеющего подвижную и неподвижную части.

Рис. 2. Расчетная схема деформационной зоны процесса непрерывного прессования Конформ
Поверхность S разъемного коттандера с деформируемым материалом можно разделить на части S_1, S_2, S_3, S_4, на которых необходимо задать граничные условия различного рода:
на S_1 задано условие первого рода
$$\theta = f(M,t),$$
где f – заданная функция координат точки M и времени t;
на S_2 задано условие второго рода
$$-\lambda \frac{\partial \theta}{\partial n} = \varphi(M,t),$$
где n – направление внешней нормали; φ – заданная функция;
на S_3 задано условие третьего рода
$$-\lambda \frac{\partial \theta}{\partial n} = \alpha(\theta - \theta_{tr}),$$
где α – коэффициент теплоемкости между телом и окружающей средой; θ_{tr} – температура окружающей среды;
на S_4 задано условие четвертого рода
$$\theta = \theta_{tr}, \quad \lambda \frac{\partial \theta}{\partial n} = \lambda_{tr} \frac{\partial \theta_{tr}}{\partial n},$$
где λ_{tr} – коэффициент теплопроводности среды.
На схеме нерврового прессования, изображенной на рис. 2, можно выделить зону пластичного течения и жесткопластическую зону, находящуюся перед упором. Граница между этими зонами описывается функцией $y = F_1(x)$. Исходя из этого в тепловой задаче необходимо рассматривать два уравнения стационарной теплопроводности:
$$\lambda \nabla^2 \theta_1 - \rho c v \nabla \theta + TH = 0;$$
$$\lambda \nabla^2 \theta_2 = 0,$$
где $\theta_1(x, y)$ – температура металла в пластической зоне; $\theta_2(x, y)$ – температура металла в жесткопластической зоне.

Зададим граничные условия для температур θ_1, θ_2:
1) на входе в пластическую зону при $x = 0$:
$$\theta_1(0, y) = \theta_0$$
где θ_0 – заданная температура исходной заготовки;
2) на поверхности контакта металла с ручьем колеса при $y = 0$:
$$-\lambda \frac{\partial \theta_1}{\partial n} = \alpha(\theta_1 - \theta_K) - 0,5 \mu_3 H \sigma \nu_1;$$
$$-\lambda \frac{\partial \theta_2}{\partial n} = \alpha(\theta_2 - \theta_K) - 0,5 \mu_3 H \sigma \nu_1,$$
олокон; \(V_1 \) – объём пластической зоны; \(V_2 \) – объём жесткокапиллярной зоны;
\(S_2 \) – поверхность \(0 \leq x, y \leq 0; \)
\(S_1 \) – поверхность \(x \leq x \leq S_1; \)
\(y = F_1(x); \)
\(S_4 \) – поверхность \(S_1 \leq x \leq S_2; \)
\(y = F_1(x); \)
\(S_6 \) – поверхность \(0 \leq x \leq S_4; \)
\(y = F_2(x); \)
\(S_7 \) – поверхность \(x \leq x \leq S_1; \)
\(y = 0; \)
\(S_8 \) – поверхность \(x = S_1; \)
\(0 \leq y \leq d. \)

Действительное температурное поле \(\theta_1(x, y), \theta_2(x, y) \) дает минимум функционалу (18). Минимизацию функционала (18) целесообразно провести методом Ритца. Зададим температуру в виде:

\[
\theta_1 = \theta_0 + \sum_{k=1}^{N_A} A_k a_k (x, y); \\
\theta_2 = \theta_0 + \sum_{k=1}^{N_A} A_k a_k (x, y) + \sum_{k=1}^{N_B} B_k b_k (x, y)
\]

где \(a_k (x, y), b_k (x, y) \) – функции координат; \(A_k, B_k \) – варьируемые постоянные.

После подстановки (19) в выражение (18) и взятия интегралов функционал становится функцией варьируемых параметров \(A_k, B_k \) и его минимум находится путем решения относительно \(A_k, B_k \) систем уравнений:

\[
\frac{\partial \Phi}{\partial A_k} = 0, \quad k = 1, ..., N_A; \\
\frac{\partial \Phi}{\partial B_k} = 0, \quad k = 1, ..., N_B.
\]

Уравнение (20) представляют собой систему линейных алгебраических уравнений вида:

\[
\sum_{l=1}^{N_A} F_{kl}^{(AA)} A_l + \sum_{l=1}^{N_B} F_{kl}^{(AB)} B_l = F_k^{(A)}, \quad k = 1, ..., N_A; \\
\sum_{l=1}^{N_A} F_{kl}^{(BA)} A_l + \sum_{l=1}^{N_B} F_{kl}^{(BB)} B_l = F_k^{(B)}, \quad k = 1, ..., N_B,
\]

где коэффициенты \(F \) представляют из себя сумму объемных и поверхностных интегралов от координатных функций \(a_k, b_k \). Функции \(a_k, b_k \) должны выбираться так, чтобы точно выполнялись граничные условия (10) и (15).

Решение этих уравнений с применением программного обеспечения не представляет трудностей и может использоваться при проектировании технологических процессов непрерывного прессования металлов методом Конформ.

Список литературы

Bibliography

УДК 621.77
Огарков Н.Н., Шеметова Е.С.

ОЦЕНКА УСТОЙЧИВОСТИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ОБОЛОЧКИ ПРИ ВОЛОНЕНИИ БИМЕТАЛЛИЧЕСКОЙ ПРОВОЛОКИ

Выполнен теоретический анализ процесса волочения биметаллической проволоки. Получены теоретические зависимости по определению толщины оболочки, при которой ее материал теряет устойчивость, что, как следует, приводит к вспучиванию при волочении. Представлены значения полугулов волоки, соответствующие потере устойчивости при деформировании оболочки в зависимости от степени деформации, условий трения оболочки на поверхностях контакта с волокой и сердечником и от показателя упрочнения материала оболочки.

Ключевые слова: биметаллическая проволока, плакирующая оболочка, устойчивость деформации, висконтактная деформация, полугул волоки.

Key words: BI-metallic strip wire, plakiruûšâ shell, sustainability deformation, vnekontaktnaâ deformation, poluugol lines.
Производство биметаллической проволоки требует соблюдения технических условий по толщине и качеству покрытий. Известно, что для каждого материала, характеризующегося склонностью к упрочнению, требуется различные способы обработки, углы наклона канала рабочей части волоки и определенные условия трения. Чаше всего металл, используемый для покрытий (медь, алюминий, цинк, латунь), мягче металла сердечника (например, стали), поэтому покрытие деформируется интенсивнее и может сопровождаться потерей устойчивости. В таких случаях наблюдается внеконтактная деформация, приводящая к вспучиванию покрышечной оболочки, запрессовывать волоки и образовывать проволоки [1–4]. Для устранения этого явления обычно рекомендуют накладывать ограничения на величину обжата, коэффициент трения и угол наклона конусной части волоки.

Существующие рекомендации по устранению вспучивания покрышечной оболочки являются неоднозначными, поскольку получены в различных условиях, и для материалов покрышечной оболочки, склонность к упрочнению которых различна, обобщающих экспериментальных и теоретических исследований до настоящего времени проводилось недостаточно. Имеются лишь единичные теоретические разработки, накладывающие ограничения на условия вспучивания биметаллической проволоки без вспучивания покрышечной оболочки и, как следствие, без образования внеконтактной деформации.

В настоящей работе предлагается расчетный метод определения допустимых соотношения между углом рабочей части волоки, условиями трения на контакте с волокой, а также размерами сечения биметаллической проволоки и склонностью материала оболочки к упрочнению для условия вспучивания без ее вспучивания. При решении задачи допускаем, что начало вспучивания оболочки соответствует потере устойчивости материала перед входом под действием продольных напряжений, действующих на оболочку. Предполагаем, что при достижении условия, соответствующего потере устойчивости, покрышечная оболочка может свободно скошить по сердечнику проволоки. Эффект упрочнения материала оболочки в процессе деформации описываем зависимостью [5–7]:

$$\bar{\varepsilon} = A \left(B + \bar{\varepsilon} \right)^n,$$

где $\bar{\varepsilon}$ – напряжение текучести материала оболочки; A, B – коэффициенты; $\bar{\varepsilon}$ – эффективная деформация; n – коэффициент упрочнения.

Поскольку средний радиус оболочки перед входом в рабочую часть волоки не изменяется, то: $d\varepsilon_θ = 0; \varepsilon_h = 0$.

Из условия постоянства объема имеем $d\varepsilon_i = d\varepsilon_h$,

Согласно уравнениям Леви – Мизеса [5]

$$\frac{d\varepsilon_i}{\sigma_i - \sigma_0} = \frac{d\varepsilon_i}{\sigma_0} + \varepsilon_i = 2\varepsilon_0.$$
С учетом размеров поперечного сечения оболочки выражение (7) преобразуется к виду:

$$P_0 = \pi (R_x^2 - R_e^2) \exp \left(\frac{\sqrt{3}}{2} - B - n \right) \frac{2}{\sqrt{3}} A \left(\frac{2}{\sqrt{3}} n \right)^n$$.

(8)

Поведение материала оболочки в очаге деформации и его взаимодействие с середочником проволоки можно представить как деформацию трубы при вращении с движущейся оправкой (см. рисунок). Усилие волочения трубы P_1 с движущейся оправкой равняется [8]:

$$P_1 = \pi \sigma \left(r_a^2 - l_a^2 \right) \left[1 + \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} \ln \left(\frac{R_a - R_e}{r_a - r_e} \right) \right]$$.

(9)

где μ_1 — коэффициент трения материала оболочки о рабочую поверхность волоки; β — угол наклона внутренней поверхности оболочки при деформации в волоке; r_a, r_e — соответственно наружный и внутренний радиусы оболочки после волочения.

В практике волочения труб обычно выбирают, что $tg \beta = \mu_2$, поэтому выражение для силы волочения упрощается:

$$P_1 = \pi \sigma \left(r_a^2 - l_a^2 \right) \left[1 + \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} \ln \left(\frac{R_a - R_e}{r_a - r_e} \right) \right]$$.

(10)

где μ_2 — коэффициент трения материала оболочки о середочник проволоки.

Допуская, что усилие, приходящееся на оболочку, равно усилию волочения трубы из материала оболочки, приравнив условию по зависимостям (8) и (9) и решим относительно угловой скорости волоки α:

$$\alpha = \arctg \frac{\mu_1 A \left(2n \sqrt{3} \right) \left(R_a^2 - R_e^2 \right)}{\mu_2 A \left(2n \sqrt{3} \right) \left(R_a^2 - R_e^2 \right) - \frac{2}{\sqrt{3} B - n} + \frac{\mu_1 \ln \left(R_a - R_e \right)}{r_a - r_e}}$$.

(11)

Или с учетом уравнения (5) получим

$$\alpha = \arctg \frac{\mu_1 \left(R_a^2 - R_e^2 \right) n^2 \exp \left(2 \sqrt{3} B - n \right) + \mu_1 \ln \left(R_a - R_e \right)}{\left(R_a^2 - R_e^2 \right) n^2 \exp \left(2 \sqrt{3} B - n \right) - \ln \left(R_a - R_e \right)}$$.

Значения углов положения волоки α представлены в табл. 2 рассчитаны для значения коэффициентов $V=1$, $\mu_1=\mu_2=\mu$

Анализ полученных значений показывает, что с увеличением степени обжатия, коэффициент трения и склонности материала оболочки к упрочнению значения углов волоки, соответственно, устойчивости материала оболочки возрастают и, как следствие, увеличивается тенденция к вспучиванию оболочки при входе в рабочую часть волоки при волочении биметаллической проволоки.

Приведенные в таблице данные получены при разных значениях коэффициентов трения материала оболочки и по-
Оценка устойчивости пластической деформации оболочки...

Озаров Н.Н., Шеметова Е.С.

верхность волокн и сердечника, однако из формул (11) следует, что влияние коэффициентов трения μ₁ и μ₂ на изменение угла α различно. Более интенсивные

влияние на изменение угла α оказывает коэффициент трения материала плакирующей оболочки о рабочую поверхность матрицы.

Полученные результаты могут быть использованы при проектировании волок и разработке технологических процессов волочения биметаллической проволоки, обеспечивающие устойчивый процесс деформации плакирующей оболочки.

Список литературы

5. Малычин Н.Н. Прикладная теория пластичности и ползучести. Изд. 2-е, переработанное. М. : Машиностроение, 1975. 400 с.; вып.

7. Регулирование параметров плакирующей детали обеспечивает устойчивый процесс деформации плакирующей оболочки.

8. УДК 621.771.06-589.4

Ракатов Е.Ю.

ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МЕТАЛЛА В ОЧАГЕ ДЕФОРМАЦИИ ПРИ ПИЛИГРИМОВОЙ ПРОКАТКЕ ТРУБ

Поставленная задача и представлена математическая модель процесса прокатки труб на пилигримовом стане. Определены силовые параметры процесса пилигримовой прокатки труб.

Ключевые слова: пилигримовая прокатка, напряжения, деформации, калибровка валков, моделюрование, усилие прокатки, расчетная модель.

The problem is set and a mathematical model of the process of pilger rolling tubes is represented. The force parameters of pilger rolling tubes are identified.

Key words: pilger rolling, stress, working, roll grooving, modeling, roll force, computational model

Одним из основных способов производства бесшовных горячекатанных труб большого и среднего диаметров с разными толщинами стенок является прокатка на установках с пилигримовыми станами. Использование непрерывнолитой заготовки круглого сечения обеспечио значительные преимущества пилигримового способа производства бесшовных труб. В связи с освоением и расширением сортамента труб из легированных и труднодеформируемых марок сталей и сплавов и повышением требований к их качеству необходимо дальнейшее совершенствование технологического процесса производства труб на трубопрокатных станах с пилигримовыми станами для прокатки тонкостенных и толстостенных труб специального назначения и внедрение их в производство.

Основной проблемой, возникающей при пилигримовой прокатке непрерывнолитых заготовок, является обеспечение благоприятной схемы напряженно-деформированного состояния металла в очаге деформации, получение высоких механических свойств проката, однородной и мелкозернистой структуры металла, уменьшение поверхностных и внутренних дефектов. В связи с этим, важно определить напряженно-деформированное состояние непрерывнолитого металла в очаге деформации при пилигримовой прокатке, что позволит оценить течение и степень проработки литой структуры металла и возможность раскрытия поверхностных дефектов, то есть прогнозировать качество бесшовных труб. Это позволяет также определить закономерности распределения тангentialных и радиальных напряжений, возникающих в валах пилигримового стана от усилия прокатки.

Пилигримовая прокатка представляет собой пе риодический процесс, в котором сочетаются элементы ковки в начальной стадии процесса и продольной прокатки, и предназначена для производства труб с заданной толщиной стенки. При пилигримовой прокатке цикл деформации гильзы в трубу осуществляется...
съ за один оборот валков с переменным радиусом калибра, причем направление вращения валков противоположно направлению подачи гильзы [1].

На рис. 1 показан валок пилигримовского стана, где \(\Theta_a, \Theta_b, \Theta_c \) – соответственно центральные углы бойка (гребня), полирующего участка, выпуска и холодного участка.

Рис. 1. Вид пилигримовского валка

Моделирование процесса прокатки труб в пилигримовом стане выполнялось с использованием программного продукта ANSYS v10.0 [2]. Расчет выполнялся в объемной постановке. Упор сделан на определении напряженно-деформированного состояния и характер течения металла на первом участке, где бойковой частью вала осуществляется интенсивная деформация гильзы по диаметру и толщине, и полирующим участке с постоянным радиусом по дну калибра, на котором раскатывается объем металла, смещённого на первом участке деформации.

Материал трубы в очаге деформации испытывает упротупластические деформации, которые достигают конечных значений. Поскольку их уровень высок, то при описании модели материала трубы в очаге деформации учитена не только физическая, но и геометрическая нелинейность. Принятие в качестве модели для очага деформации упротупластического поведения, а не жесткопластического, позволяет учесть при моделировании историю нагружения. Кроме исследования очага деформации определялось напряженное состояние валков от действия усилия прокатки. Для валков принимаем, что материал, из которого их изготовлен, подвержен только упругим деформациям и напряжениям, подчиняющимся закону Гука.

При исследовании напряженно-деформированного состояния трубы при прокатке пренебрегли инерционными и массовыми силами, деформируемый металл трубы считаем несжимаемым. При записи уравнений состояния использован случай простого нагружения. Для материала трубы принята упротупластическая модель Прандтля-Рейса. Так как задача сложная, то приходится итерационно находить, нет ли разогрева деформируемого металла и валков, это не учитывается.

Сопротивление деформации зависит от степени и скорости деформации, а также от температуры прокатываемого металла. Принимается, что трение на всей поверхности контакта валков с трубой подчиняется закону сухого трения Кулон, причем коэффициент трения постоянен на всей контактной поверхности.

Рассматривался процесс пилигримовой прокатки труб из стали 1ХГС диаметром 325 мм из гильзы диаметром 500 мм, диаметр дна равен 300 мм. Скорость вращения валков составляла 45 об/мин.

Моделирование процесса пилигримовой прокатки проводим для трех калибровок валков согласно таблице.

Величина подачи для каждой калибровки валков составляла 10, 20 и 30 мм. Температура прокатываемого металла гильзы принята постоянной и равной 1050°C.

Модуль упругости определен по зависимости (1), приведенной в работе [3]:

\[E = -4.566 \cdot 10^5 + 160 \cdot T + \frac{3.266 \cdot 10^8}{T}, \]

где \(E \) – модуль упругости материала, МПа; \(T \) – температура металла, °C.

<table>
<thead>
<tr>
<th>N п/п</th>
<th>Центральные углы участков поперечного сечения вала, град.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Бойковый</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
</tr>
</tbody>
</table>

Одним из основных параметров при моделировании процесса пилигримовой прокатки труб является сопротивление пластической деформации, которое вычисляется по зависимости (2), приведенной в работе [4]:

\[\sigma_S = 288 \cdot U_i^{0.17} \cdot (\ln \varepsilon_i)^{1.45} \cdot e^{-0.00235 \cdot T}, \]

где \(\sigma_S \) – сопротивление пластической деформации, МПа; \(U_i \) – скорость деформации, 1/с; \(\varepsilon_i \) – степень деформации, %.

Зависимость сопротивления пластической деформации от степени деформации дана на рис. 2. Коэффициент трения между прокатываемым металлом и валками принят равным 0.34.
На рис. 3 изображена расчетная модель прокатываемой трубы с калибром валка перед прокаткой.

Рис. 3. Расчётная модель прокатываемой трубы в пилигримовых валах

В силу симметрии рассматривается четверть продольного сечения трубы с калибром валка. Учитывается деформация гильзы по трем направлениям на основе трехмерной объемной модели.

Конечно-элементная модель трубы и валков формировалась из трехмерных 20-узловых твердотельных элементов SOLID186, вид которых показан на рис. 4.

На поверхностях контакта валков с гильзой размещены контактные элементы TARGET170 и CONTA174 [2]. Это элементы контакта типа «поверхность в поверхность», представляющие собой нелинейный анализ с возможностью учета больших деформаций, переменности контактного взаимодействия (смятия-разъемки) и кулонова трения скольжения. Контакт представлен последовательным положением точек на одной поверхности относительно другой поверхности. Программа использует элементы контакта для отслеживания относительных положений контактирующих поверхностей. Для определения контакта и трения к узлам на контактирующих поверхностях прикладываются соответствующие силы [2].

Рис. 4. 20-узловой конечный элемент, принятый для расчёта

В качестве кинематических граничных условий задавалось отсутствие нормальных перемещений по плоскостям симметрии гильзы и валков.

При пилигримовой прокатке труб передний конус валков (гребень) выполняет при деформации гильзы две функции: одна часть объема металла обжимается непосредственно бойком, а другая — смещается бойком в полирующий участок, где деформируется до размеров готовой трубы. Таким образом, при прокатке в каждом момент рабочий конус валков соприкасается с металлом не по всей поверхности очага деформации одновременно, а какой-то сравнительно небольшой частью (мгновенный очаг деформации).

Характер изменения усилия пилигримовой прокатки в зависимости от величины подачи показан на рис. 5. Из графика следует, что усилие пилигримовой прокатки существенно зависит от подачи гильзы в валки. Например, для калибровки валков 105-70-45-140 при увеличении подачи с 10 до 30 мм усилие пилигримовой прокатки возрастает от 10 до 14 МН. Причем наибольшая величина усилия имеет место в конце бойкового участка вала пилигримового стана, где происходит обжатие смещённого объема металла.

Рис. 5. Изменение усилий на валок

Заключение

Разработана математическая модель процесса прокатки стальных труб на пилигримовых станах. Определен уровень и характер изменения усилия прокатки в зависимости от величины подачи гильзы в валки пилигримового стана.

Список литературы

Bibliography

2. ANSYS. Structural Analysis Guide. URL: http://www.cadful.ru
ОПТИМИЗАЦИЯ ПЛАНИРОВАНИЯ ПРОКАТНОГО ПРОИЗВОДСТВА

В условиях жесткой конкуренции на рынке сортового проката двухступенчатого роликового стана 250 (далее Стан-250), предназначенного для прокатки сортовых и фасонных профилей из углеродистых и низколегированных марок сталей, на Стане-250 производится периодический профиль горячекатаного арматурного проката класса А400, термоупрочненного арматурного проката класса А400С и А500С и высокопрочного арматурного проката класса А800 диаметром от 6 до 40 мм. Для получения сортовых и фасонных профилей на Стане-250 служит катаная или непрерывнолитая квадратная заготовка сечением 125х125 мм, длиной от 8,0 до 11,7 м.

План производства для Стана-250 формируется помесячно, т.е. является краткосрочным. Тому есть несколько причин.

Во-первых, спрос на арматуру меняется очень быстро. Потребители продукции ММЗ, как правило, при необходимости имеют возможность существенно корректировать свои ранее согласованные с ММЗ заказы по номенклатуре и объемам.

Во-вторых, длительность производственных циклов для выпуска требуемых партий арматуры для Стана-250 обычно составляет от одного до нескольких дней, для чего достаточно месячный горизонт планирования.

В-третьих, Стан-250 имеет фиксированную производительность, поэтому нет необходимости в долгосрочном, например на год, планировании его загрузки.

В-четвертых, производство Стана-250 относится к поточному типу. Характерной особенностью такого производства является отсутствие необходимости в планировании производства комплектующих, при этом план выпуска готовой продукции напрямую связан с оперативным планом производства.

Процесс планирования производства для Стана-250 можно условно разделить на два этапа:

1. Ежемесячно отдел сбыта ММЗ формирует потребность в продукции на очередной месяц. Отдел производства на основании этой потребности формирует производственное задание на очередной месяц для электросталеплавильного производства, производящего заготовку, и для прокатного производства. Прокатный цех на основании производственного задания формирует план производства для Стана-250 на очередной месяц с разбивкой по дням. При этом прокатный цех учитывает графики планово-предупредительных ремонтов Стана-250, который формирует отдел ремонтов.

2. Несколько раз в месяц, иногда по несколько раз в неделю, в соответствии с быстро изменяющимися спросом отдел сбыта ММЗ формирует заявки на корректировку плана производства для Стана-250, которые согласует с отделом производства. На основании этих заявок прокатный цех своевременно осуществляет изменение оперативного плана производства для Стана-250, при этом уточняя потребность в заготовке для электросталеплавильного производства.

Реализация функции формирования плана производства для Стана-250 требует решения следующей задачи оптимизации. Необходимо минимизировать время простой Стана-250, связанного с перевалкой при смене диаметра профиля и класса арматурной стали, путем подбора соответствующей последовательности запуска партий арматуры в производство.

Математическая постановка данной задачи может быть записана в следующем виде: найти вектор управления, обеспечивающий экстремальное значение целевой функции при ограничениях типа равенств и неравенств.

В рассматриваемом случае:

- целевая функция \(\sum_{i=1}^{p} t_i \rightarrow \min \), где \(p \) – количество перевалок Стана-250, \(t_i \) – время перевалки;
- параметр управления – кортеж партий арматуры \(L \in K^L \), где \(K^L \) – множество всех кортежей длиной \(|L| \).
ограничения \(\sum_{j=1}^{l} q_j / w_j \leq T \), где \(q_j \) – объем j-й партии арматуры, \(w_j \) – производительность стана при прокатке j-й партии арматуры; \(T \) – эффективное время работы стана в плановом периоде; \(D_j \) – матрица времен перевалки между i-й и j-й партиями арматуры при смене диаметра профиля; \(S_{ij} \) – матрица времен перевалки между i-й и j-й партиями арматуры при смене класса арматурной стали.

Данная задача является NP-трудной [2], т.е. в общем случае, а именно при значительном количестве номенклатурных единиц в плане производства, не может быть решена полным перебором за конечное время даже с помощью современной вычислительной техники. Однако для ее решения в рассматриваемой функции планирования алгоритм полного перебора был реализован и показал свою эффективность при количестве номенклатурных единиц арматуры в плане производства для Стан-250 не более семи.

Для сокращения времени расчета были исследованы две эвристики, основанные на использовании норм времени на переналадку (перевалку) оборудования Стан-250 при смене диаметра профиля и класса арматурной стали.

В первой эвристики на каждом шаге алгоритма выбирается та арматура, после которой суммарное время переналадки на другие виды арматуры является минимальным. Данная эвристика исследовалась на эффективность путем сравнения решений, получаемых с ее помощью, и решений, получаемых полным перебором. К сожалению, данная эвристика оказалась неэффективной, т.к. в большинстве численных экспериментов полученное с ее помощью время простоя Стана-250 было на 40-60% больше того времени простоя, которое позволял получить полный перебор.

В качестве второй эвристики был использован так называемый жадный алгоритм [3], заключающийся в принятии локально оптимальных решений на каждом этапе, исходя из предположения о том, что конечное решение также окажется оптимальным. В рассматриваемой задаче жадный алгоритм на каждом шаге выбирает в качестве следующей ту арматуру, для которой время простоя при переналадке от текущей арматуры минимально. Данный алгоритм показал высокую эффективность при сравнении с результатами, полученными полным перебором. Так, при проведении 50 численных экспериментов с произвольно выбираемыми семьями видами арматуры:
- в 18 экспериментах было получено минимальное время простоя Стана-250, совпадающее с временем простоя, полученным полным перебором;
- в 30 экспериментах было получено решение с временем простоя, которое не более чем на 10% большее минимального, полученного полным перебором;
- в 2 экспериментах было получено решение с временем простоя, которое не более чем на 12% большее минимального, полученного полным перебором. Наилучшее решение оказалось большим минимального на 11,53%.

Таким образом, с учетом того, что жадный алгоритм позволяет формировать план производства Стан-250 для реального набора арматуры на персональном компьютере за время, не превышающее 4 мин, именно он и был выбран в качестве основного для решения задачи минимизации времени простоя Стан-250. Дополнительным аргументом в пользу жадного алгоритма послужила легкость, с которой на ММЗ решается задача выбора первой арматуры в последовательности для плана производства. В соответствии с техническими условиями, как правило, это арматура с номинальным диаметром 12 мм.

Дополнительно в функции формирования плана производства для Стана-250 реализована возможность учета реально существующих на MMЗ технологических условий перехода между диаметрами профиля и классами арматурной стали. Примером такого условия может быть принятие на предприятии последовательности перевалки. В этом случае приоритетами при составлении плана производства для Стана-250 будут именно ограничения, связанные с технологическими условиями, даже если они противоречат логике используемого, например жадного, алгоритма.

Также в функции формирования плана производства для Стана-250 реализована возможность не использовать имеющиеся графики планово-предупредительных ремонтов, а генерировать новые графики, чтобы не прерывать ремонтными мероприятиями производство соответствующих партий арматуры, т.к. такой разрыв требует повторной настройки стана на «докатку» незаконченной партии арматуры.

Пример оперативного плана производства для Стана-250 приведен на рисунке. Своевременная корректировка оперативного плана производства для Стана-250 осуществляется через механизм электронных заявлений на корректировку, формируемых отделом сбыта MMЗ. Текущее состояние заявки на корректировку определяется ее статусом:
- сформирована – заявка сформирована заинтересованным сотрудником отдела сбыта и находится на рассмотрении;
- согласована – заявка прошла проверку и будет использована для корректировки оперативного плана производства;
- отклонена – заявка не прошла проверку и не будет использована для корректировки оперативного плана производства.

Сформированная заявка проходит проверку на соответствие имеющимся на MMЗ технологическим и ресурсным ограничениям путем формирования прогностного плана производства. Сформированный прогностный план анализируется на соответствие имеющимся объективным ограничениям, в том числе на возможность производства требуемого количества готовки, и субъективным критериям эффективности специалистов отдела производства. В результате данные специалисты либо согласуют, либо отклоняют заявку на корректировку
ОПЕРАТИВНЫЙ ПЛАН ПРОИЗВОДСТВА СТАНА-250 НА АПРЕЛЬ 2011 г.

<table>
<thead>
<tr>
<th>№</th>
<th>Дата плана</th>
<th>Числ.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Пример OPERATIVNYJ PLAN PROIZVODSTVA STANA-250

Согласованные заявки принимаются к исполнению прокатным цехом. При этом на их основе осуществляется корректировка оперативного плана производства с помощью специальной функции, которая позволяет сформировать план производства на месяц начиная с любой даты этого месяца с учетом:
– партии арматуры, производимой последней в предшествующий день;
– фактического выпуска арматуры, который может отличаться от планового;
– ручных корректировок плана, которые при необходимости могут произвести ответственный сотрудник отдела производства.

Таким образом, реализация функции корректировки плана производства в сочетании с использованием прогнозных планов позволяет специалистам из заинтересованных подразделений MM3 моделировать возможные изменения в оперативном плане производства и прогнозировать их последствия.

Следует отметить, что корректировка плана производства может осуществляться также на основании изменений графика планово-предупредительных ремонтов для стана-250.

Перечисленные функции реализованы в виде комплекса программ, использующих справочную информацию о номенклатуре готовой продукции и заготовки, технологических операциях, нормах времени на перевалку, а также данные из плана технического обслуживания и ремонта Ста-250. Применение данного комплекса программ на MM3 позволило получить следующие результаты:
– удалось снизить планируемые простой на ремонт и обслуживание Ста-250 на 0,3%, что с учетом объемов производства Ста-250 позволяет получить значительный экономический эффект;
– созданы инструменты для адаптации MM3 к изменению спроса на готовую продукцию путем тюнингования последствий этих изменений и согласованного перепланирования производства Ста-250 всеми заинтересованными подразделениями.

Таким образом, использование математического моделирования и информационных технологий на MM3 позволяло создать дополнительные возможности для снижения издержек производства за счет сокращения простоев стана и максимально гибкого реагирования на быстро меняющийся спрос за счет своевременного перепланирования работы стана.

Выводы

Приведен пример оптимизации плана производства для двухштучного сортового Ста-250 с целью минимизации времени простого стана, связанного с перевалкой при смене диаметра профиля и класса арматурной стали, путем подбора соответствующей последовательности запуска партий арматуры в производство.

Автоматизация корректировки плана производства для Ста-250 позволила повысить согласованность действий различных подразделений предприятия и тем самым увеличить уровень сервиса для потребителей MM3.

Список литературы

Bibliography

МATERIALOVEDENIE I TERMIČESKAYA OBROTKA METALLOV

УДК 544.022.22 : 669.15’234’788
Мирзаев Д.А., Окишев К.Ю., Мирзоев А.А., Шабуров А.Д.

РЕЛАКСАЦИЯ БЛИЖНЕГО ПОРЯДКА АТОМОВ ВНЕДРЕНИЯ В СПЛАВАХ Fe–Pd–H ПРИ ТЕРМИЧЕСКИХ ВОЗДЕЙСТВИЯХ

Рассмотрена кинетика ближнего упорядочения атомов водорода в тройных сплавах железа, содержащих сильно взаимодействующую с водородом примесь замещения (Pd) при резком переохлаждении образцов. Проведены расчёты кинетики изменения параметра порядка и растворимости водорода для случая изотермической выдержки и непрерывного охлаждения.

Ключевые слова: сплавы железа, водород, сплавы Fe–Pd–H, ближний порядок, кинетика.

The paper considers kinetics of short-range ordering of hydrogen atoms in ternary iron-base alloys containing a substitutional impurity strongly interacting with hydrogen (Pd) under fast supercooling. Kinetics of change of order parameter and hydrogen solubility is calculated both for isothermal holding and continuous cooling.

Key words: iron alloys, hydrogen, Fe–Pd–H alloys, short-range order, kinetics.

В исследовании [1] нами было показано, что в тройных растворах замещения-внедрения на основе α-железа, таких как сплавы Fe–Pd–H, атомы замещения (Pd), фактически неподвижные ниже 500°C, могут создавать сильные связи с атомами водорода, а потому выступают для последующих как ловушки [2]. Ближний порядок во взаимном расположении атомов водорода и палладия проявляется даже при низких концентрациях палладия (θпд<0,01) и водорода (θν<0,0001) и приводит к возрастанию растворимости водорода в области относительно низких температур (ниже 200°C), хотя растворимость водорода в чистом α-железе непрерывно уменьшается при понижении температуры [3]. Вследствие подобного снижения растворимости водород выделяется в любой поре, образуя газ Н2, причем его давление PН2 в образце, содержащем микропоры, изменяется с понижением температуры по кривой с максимумом, расположенным в районе 100°C. Именно при этих температурах в сталях возникают специфические дефекты – флокены, представляющие собой тонкие трещины, заполненные водородом, причем их количество постоянно пополняется в результате диффузионного стекания атомов водорода к поверхности трещины и её развитию.

Зависимость давления, точнее фугтивности, от температуры и содержания водорода в сплаве CН

\[P_{Н2}^{1/2} = \frac{RTB C_Н^{1/2}}{4f} \left(\frac{8 f C_Н^{0}}{RTB (C_Н^{1/2} - 1)} \right) \] \(1 \)

отражает компромисс между законом Сиверта CН = 1 exp(–(U/RT))PН21/2, из которого следует, что давление PН2 молекулярного водорода в микропоре ста-ли при неограниченном запасе растворённого водоро-да должно возрастать с понижением температуры по уравнению \[P_{Н2} = \left(\frac{C_Н}{I} \right)^2 \exp \left(\frac{2U}{RT} \right) \] и законом состояния идеального газа \[P_{Н2} = \frac{m_{Н2}}{A_{Н2}} \frac{RT}{V} \] давление PН2 при T → 0 должно обращаться в ноль. В уравнении (1) через CН0 обозначена концентрация водорода в сплаве (в см³ газа Н2 при нормальных условиях на 100 г металла), а величина CН = 1 exp(–(U/RT)) представляет растворимость водорода в сплаве при давлении его пара 1 атм; U – энергия активации растворения водорода; f – объёмная доля пор; /β – константы.

Разработав статистическую модель тройного раствора Fe–Y–H, где Y – промышленный элемент замещения, атомы которого, в отличие от водорода, при рассмотриваемых относительно низких температурах можно считать диффузионно «замороженными», авторы [1] получили выражение для растворимости водорода в сплаве Fe–Y в виде

\[\ln C_Н^{1/2} = 3,8614 + \frac{3269,8}{T} \ln \left(1 - \theta_Y + \theta_e \exp \left(\frac{E}{RT} \right) \right) \] \(2 \)

где E = N0e = N0(ε₉-Y-H – ε₉-Pd-H) – разность энергий взаимодействия атомов Y–H и Fe–H; N0 – число Авогадро; θ₉ – доля атомов Fe в бинарном сплаве с железом. Первые два слагаемых в (2) отражают растворимость водорода в чистом железе [4]. При использовании данных В.И. Архарова [5] для растворимости водорода в среднетугоплавкой стали, содержащей 0,5 мас. % (0,26 ат. %) палладия, было установлено, что E = −32000 Дк/моль.
Расчёты давления водорода на основе выражений (1) и (2) показали, что добавление к железу 0,26ат.% Pd снижает максимальное давление в порах с 10° до 3·10° Па. Тем самым было количественно подтверждено, что в основе эффекта В.И. Архарова – предотвращение образования флокенов в стали при её легирования малыми добавками палладия – лежит рост растворимости водорода, что предполагал и сам В.И. Архаров [6].

1. Кинетическая теория ближнего упорядочения в изотермических условиях

Однако при выводе и применении уравнения (2) было неверно принято, что охлаждение сплавов после ковки или противофлокеновского отжига проводится достаточно медленно, так что при любой температуре в сплаве устанавливается равновесный ближний порядок, определяющий степень захвата атомов палладия атомов водорода в твёрдом растворе. В действительности охлаждение образцов от исходной высокой до произвольной температуры можно провести быстро, например, струями воды. В связи с этим возникает задача о кинетике ближнего упорядочения атомов водорода в изотермических условиях, а также при непрерывном охлаждении. Её решение и посвящено настоящее исследование.

В качестве основного будем использовать подход к проблеме ближнего упорядочения в сплавах, использованный М.А.Штремелем с сотрудниками [7]. За меру ближнего порядка в расположении атомов палладия и водорода возьмём параметр

\[p = p_{H-Pd} = \frac{N_{H-Pd}}{V\Theta_H z_{21}} , \]

представляющий вероятность события, что данный ближайший к атому водорода, расположенному в тетрапоре, узел основной решётки занят атомом палладия. В этом выражении \(N_{H-Pd} \) – число пар H–Pd; \(N = N_{Fe} + N_{Pd} \) – число атомов основной решётки; \(\Theta_H = \frac{N_H}{V} \) – доля тетраэдрических пор, занятых атомами водорода; \(z_{21} = 4 \) – число ближайших атомов, окружающих атом водорода, находящийся в тетраэдрической поре ОЦК-решётки; \(v = 6 \) – число тетрапор, приходящихся на один атом основной решётки. В условиях непрерывной миграции атомов водорода по решётке происходит пересыпки из одной тетрапоры в соседнюю, причём эти поры могут отличаться количеством атомов палладия в ближайшем окружении. Поскольку энергетический барьер при пересыске атома водорода от атома палладия выше, чем от атома палладия, на величину \(\varepsilon = E/V_0 \), то возникает различие частот пересылок, вследствие чего количество атомов водорода, соседствующих с атомами палладия, будет возрастать, пока не достигнет равновесного значения. После любого изменения температуры в сплаве происходит процесс установления нового равновесного значения параметра порядка.

Чтобы описать аналитически этот процесс, будем использовать общее кинетическое уравнение (13, 6) работы [7], но примем, что взаимное расположение атомов Fe и Pd, а также атомов водорода и свободных тетрапор является неупорядоченным; в этом случае два других параметра порядка \(p_{Pd-Fe} = 1 - \Theta_{Pd} \) и \(P_{H-H} = \Theta_{H} \) [7]. Тогда упомянутое кинетическое уравнение ближнего упорядочения примет вид

\[\frac{dp}{dt} = z_2 \frac{3N_0}{2N_v} \left(1 - p \right) \left(1 - \frac{1}{V} \right) \left(1 - \frac{\Theta_{Pd} - \Theta_{H}}{1 - \Theta_{H}} \right) \left(\frac{V}{1 - V} \right)^{z_{21} - 1} \times, \]

где \(V = \exp \left(- \frac{\varepsilon}{kT} \right) \); \(\Theta_{Pd} = 2.173 \times 10^{-3} \exp \left(-12195/RT \right) \) см³/с – коэффициент диффузии водорода в чистом железе [4]; \(\beta = a^2 = 1.013 \text{ Å} \) – расстояние между ближайшими тетрапорами; \(\tau \) – время.

Параметр \(\tau \) определят в [7] как

\[\tau = \frac{z_{21} - u}{u}, \]

где \(z_{21} \) – число атомов основной решётки, окружающих тетраэдрическую пору, \(u \) – количество атомов основной решётки, являющихся ближайшими одновременно для двух соседних тетрапор. Анализ геометрии решёток приводит к значениям \(z_{21} = 4 \) и \(u = 3 \); следовательно, \(\tau = 1 \). Поэтому формулу (4) можно существенно упростить. Через \(M(p) \) в ней обозначен полный второй степень по переменной \(p \), обращение в ноль которого отражает условие квазихимического равновесия [7]. Два корня этого уравнения

\[p_{21} = \frac{1 + (1 - \Theta_{H} - \Theta_{Pd})/h \pm \sqrt{1 + (1 - \Theta_{H} - \Theta_{Pd})/h \pm 4h(1 - \Theta_{Pd})/h}}{2h}, \]

где

\[h = \frac{1}{\sqrt{2}} - 1 = \exp \left(- \frac{\varepsilon}{kT} \right) - 1. \]

Равновесное значение параметра порядка \(p^0 \) определяет положительный корень. Второй, отрицательный, не имеет ясного физического смысла. Но поскольку рассматриваемый полим может быть представлен в форме \(\Theta_{Pd}(p - p^0)/(p - p_2) \), то второй корень также попадает в выражение (4). Отметим, что формула (6) для корней \(M(p) \) оказалась громоздкой. Упростим её, используя малость \(h \) в рассматриваемых сплавах: разложим чиситель выражения (6) в ряд по степеням \(h \), ограничившись слагаемым второй степени. Учитывая, что знаменатель содержит \(h \), найдём

\[p_{21} = \frac{\Theta_{Pd}}{1 - (1 - \Theta_{Pd})/h} + \frac{(h + 1)\Theta_{Pd}(1 - \Theta_{Pd})/h}{(1 + (1 - \Theta_{Pd})/h)^3} \]

\[p_{21} = \frac{1 + (1 - \Theta_{Pd})/h}{1 - (1 - \Theta_{Pd})/h} + \frac{(h + 1)\Theta_{Pd}/h}{1 + (1 - \Theta_{Pd})/h} \]

\[p_{21} = \frac{h(1 - \Theta_{Pd})/h}{1 + (1 - \Theta_{Pd})/h}, \]
Оценки величины этих слагаемых привели к выводу, что, по крайней мере для сплавов Fe–Pd–H, можно ограничиться первыми членами:

\[p^0 = \frac{\Theta_{\text{Pd}}}{1 + (1 - \Theta_{\text{Pd}})h}; \quad p_2 = -\frac{1 + (1 - \Theta_{\text{Pd}})h}{\Theta_{\text{H}}}; \quad (9) \]

причём \([p_2] >> p^0\), поэтому в сомножителе \((p - p_2)\) можно пренебречь величиной \(p\). Тогда дифференциальное уравнение, (4) примет вид

\[\frac{dp}{d\tau} = -\frac{3p_0^0}{2\beta^2} V\left[1 + (1 - \Theta_{\text{Pd}})h\right](p - p^0). \quad (10) \]

Это уравнение можно получить иначе. Из определения \(p\) как вероятности события, что соседний с атомом водорода угловой решётки заполнен атомом \(\text{Pd}\), следует, что \(N_{\text{H},1} = N_{\text{H}}z_{12}p = Nvz_{12}\Theta_{\text{H}}p\) представляет число атомов водорода, связанных с атомами палладия, тогда как \(N_{\text{H},2} = Nvz_{12}\Theta_{\text{H}}(1 - p)\) есть число атомов водорода, окружённых только атомами железа. Изменение \(N_{\text{H},1}\) обусловлено пересечениями атомов водорода. Если, например, атом H контактирует с одним атомом палладия, то три из четырёх возможных пересечений атома водорода с соседними тетрапорами не изменяют ближайшее соседство H–Pd, и только пересек в четвёртую тетрапору с вероятностью \((1 - \Theta_{\text{Pd}})\) открывает возможность образования ещё одной связи H–Fe. Поэтому величина

\[-N_{\text{H},1}(1 - \Theta_{\text{Pd}}) = \frac{1}{4} \Gamma \exp(c/kT)\]

представляет количество атомов водорода, отвечающихся от атомов \(\text{Pd}\) в единицу времени. Здесь \(\Gamma\) – частота пересечений атомов водорода по решётке внедрения в \(\alpha\)-железе, а множитель \(\exp(c/kT)\) показывает, что потенциальный барьер при пересечении атома водорода от атома Fe на атом Fe повышен на величину энергии \(\epsilon\) по сравнению с обратным пересечением, для которого энергия активации принимается такой же, как в чистом железе.

Если атом Fe из числа \(N_{\text{H},3}\) находится в окружении только атомов железа, то его пересек в соседнюю тетрапору с вероятностью \(\Theta_{\text{Pd}}\) создаёт возможность появления нового соседа Pd. Следует только учитывать, что в данной позицию перекнешь из четырёх соседних пор. Поэтому \(\frac{1}{4} \Gamma \Theta_{\text{Pd}} N_{\text{H},3}\) представляет количество новых пар H–Pd, возникающих в единицу времени. В итоге можно записать:

\[\frac{\partial N_{\text{H},1}}{d\tau} = -\frac{1}{4} \Gamma \Theta_{\text{Pd}} N_{\text{H},2} - \frac{1}{4} \Gamma (1 - \Theta_{\text{Pd}}) \exp(c/kT) N_{\text{H},1}, \quad (11) \]

а затем перейти к уравнению для параметра ближнего порядка, к которой получается аналогичным (4), но коэффициент пропорциональности в нём не содержит множителя \(V = \exp\left(-\frac{\epsilon}{2kT}\right)\). Становится очевидным, что величина \(D_{\text{H}} = D_{\text{H}}^0 [1 + (1 - \Theta_{\text{Pd}})h] V\) в уравнении (10) определяет коэффициент диффузии водорода в тройном сплаве, содержащем примеси атомов \(\text{Pd}\), сильно взаимодействующих с водородом. Различие в результатах расчёта \(D_{\text{H}}\) в двух вариантах обусловлено сделанным в работе [7] предположением, что потенциальный барьер для мигирующего атома водорода увеличен вблизи атома палладия не на величину энергии связи \([\epsilon]\), а на \([\epsilon/2]\). Чтобы избежать нечёткости определения барьера, используем развитую Орини [8] общую термодинамическую теорию коэффициента диффузии в условиях существования в образце центров захвата атомов водорода, таких как вакансии, дислокации, примесные атомы, дислокации и т.п. В общую формулу, получившую вид:

\[D_{\text{H}} = D_{\text{H}}^0 \frac{1}{1 + K \frac{N_{\text{X}}}{N_{\text{L}}}} \]

входят \(N_{\text{L}}\) и \(N_{\text{X}}\) – количество нормальных и особых мест расположения атомов водорода в расчёт на единицу объёма, а

\[K = \exp(-\Delta E_{\text{X}}/kT) \]

есть константа равновесия для реакции \(\text{H}_\text{norm} \leftrightarrow \text{H}_\text{ахр}\). Величина \(\Delta E_{\text{X}} = \epsilon\) представляет уменьшение потенциальной энергии при помещении атома водорода в позицию захвата. Формула (12) была позднее получена другими методами в теоретических работах [9] и [10]. Результаты её экспериментальной проверки рассмотрены в [8, 11] и др. Формулу (12) можно считать достаточно надёжной. Если в качестве центров захвата рассматривать атомы палладия, то в образце объёмом \(V_0\) плотность мест захвата \(N_{\text{X}} = \frac{N_{\text{Pd}}}{V_0}\), где \(z_{12} = 24\) – число тетрапор, окружающих атом основной решётки, тогда как плотность нормальных мест \(N_{\text{L}} = \frac{V N}{V_0}\), ибо на один атом ОЦК решётки приходится \(v = 6\) тетрапор. Следовательно, отношение \(N_{\text{X}} = 24N_{\text{Pd}} = 40\), а выражение для коэффициента диффузии водорода в сплаве Fe–Pd примет вид

\[D_{\text{H}} = D_{\text{H}}^0 \frac{1}{1 + 40p_2 \exp(-E/RT)}. \quad (14) \]

В связи со сделанным уточнением уравнение (10) следует переписать в виде

\[\frac{dp}{d\tau} = -\frac{3p_0^0}{2\beta^2} V\left[1 + (1 - \Theta_{\text{Pd}})h\right](p - p^0). \quad (15) \]
Рассмотрим решение этого уравнения для двух вариантов нестационарного процесса: резкое переохлаждение сплава от высокой температуры с последующей изотермической выдержкой при различных температурах и непрерывное охлаждение от высокой температуры с постоянной скоростью.

2. Изменение растворимости водорода в процессе выдержки.
Допустим, что сплав был нагрет и выдержан при относительно высокой температуре \(T_0 \), так что установилось равновесное значение параметра ближнего порядка \(p^0(T_0) \), а затем перенеехлаждён до температуры \(T_1 \), близкой или равной комнатной, и выдержан в течение времени \(t \) от этого момента. Для этого случая уравнение (15) имеет очевидное решение:

\[
p(T_1, \tau) = p^0(T_1) + \left(p^0(T_0) - p^0(T_1) \right) \exp(-\lambda \tau),
\]
где

\[
\lambda = \frac{3D_{H}^0}{2p^0_{\text{Pal}}} - \frac{1}{1 + 40p_{\text{Pal}}} \exp(-E/RT).
\]
В те моменты времени, когда параметр \(p \) ещё не равен равновесному значению \(p^0 \) при рассматриваемой температуре, выражение (2) для растворимости водорода становится неточным, и его следует заменить на более общее

\[
\ln C_H = 3,8614 - \frac{3269,89}{T} + \ln \left(\frac{1 - \theta_{\text{Pal}}}{1 - p} \right).
\]
вытекающее из статистической теории сплава [1]. Определяемая при этом растворимость водорода в α-железе при \(P_{\text{H}} = 1 \) атм является как бы мгновенной.

Результаты численных расчётов по формуле (18) при нескольких температурах для сплава с 0,26 ат. %Pd приведены на рис. 1. Кинетические кривые изменения параметра порядка для различных температур выдержки представлены на рис. 1, а. Начальное небольшое значение \(p \) установилось при температуре \(T_0 = 680 \) °C, от которой проводится мгновенное переохлаждение. Подъем величины \(p \) обусловлен установлением нового равновесного порядка. При комнатной температуре переход к новому равновесию происходит в течение нитково малого промежутка времени \(10^{-10} - 10^{-7} \) с. Лишь при температурах ниже \(-120\) °C этот период установления порядка начинает исчисляться секундами. Изменение растворимости водорода в ходе изотермических выдержек показано на рис. 1, б. Здесь важно иметь в виду, что хотя равновесная растворимость водорода в чистом железе непрерывно понижается при уменьшении температуры, однако достаточ но добавить к железу 0,26 ат. %Pd, как в районе 200°С появляется минимум растворимости, так что при дальнейшем понижении температуры до 0 К растворимость водорода возрастает [1]. Именно по этой причине растворимость водорода при \(-150\) °C и больших значениях \(t \) оказывается самой высокой.

![Весенник МГТУ им. Г. И. Носова. 2012. № 1.](image)
Распад аморфной структуры в сплавах...

Мирзаев Д.А., Окшев Ю.С., Мирзоев А.А., Шабуров А.Д.

Bibliography

УДК 669.14: 621.726

Гадалов В.Н., Сальников В.Г., Романенко Д.Н., Алехин Ю.Г., Квашин Б.Н.

НИЗКОТЕМПЕРАТУРНОЕ ЦИАНИРОВАНИЕ ЭЛЕКТРОЛИТИЧЕСКИХ ЖЕЛЕЗОХРОМИСТЫХ ПОКРЫТИЙ

Исследовано влияние концентрационных изменений в электролите и режимов электролиза на состав и структуру гальванических осадков. Для устранения недостатков, присущих гальваническим покрытиям, обеспечения их высокой износостойкости и улучшения их эксплуатационных характеристик предложено низкотемпературное цианирование. Наибольший эффект цианирования достигается при T=923 К, что соответствует наибольшей толщине диффузионного слоя.

Ключевые слова: низкотемпературное цианирование, железохромистые покрытия, электроосаждение, упрочнение, износостойкость, восстановление.

Influence of concentration changes in electrolyte and influence of modes of electrolysis on structure and structure of galvanic deposits is investigated. For elimination of the lacks, inherent in galvanic coverings to provide their high wear resistance and to improve their operational characteristics it is offered low-temperature cyanidation. The greatest effect cyanidation is reached at T=923 K that corresponds to the greatest thickness of a diffusive layer.

Key words: low-temperature cyanidation, iron-chrom coverings, electroosedimentation, hardening, wear resistance, restoration.

Электроосаждение железохромистых покрытий проводилось из сернокислого электролита состава (кг/м³): сернокислое железо FeSO₄ – 250–400; нитрат хрома Cr(NO₃)₃ – 5–20; сульфат натрия Na₂SO₄ – 20–40, используя ток переменной полярности [1] (асимметричный), что повышало производительность осаждения в 1,4–1,8 раза по сравнению со стационарным процессом (на постоянном токе). Для чего была применена установка с двумя встречно включенными вентиляторами, позволяющими варьировать в широких пределах режимы электроосаждения.

Цианирование образцов с железохромистыми покрытиями проводили в пастообразной среде на основе сажи и азотсодержащего компонента (50% – сажи; 50% – жгутой кровяной соли; связующий компонент – органический клей) при температуре 873–923 К. Температурный режим цианирования в пастообразной среде соответствует температурам высокого отпуска улучшающих доэлектродных сталей, деталей из которых подвергались восстановлению электроосажденными Fe-Cr покрытиями. В связи с этим структура и свойства основного металла, как правило, после такой комбинированной обработки не изменяются.

В работе исследовались цианированные электролитические покрытия на сталях 20–50 с содержанием хрома в гальваническом осадке = 1,0–3,0%.

Изучение влияния показателя асимметрии (отношение величины катодного тока к анодному) на выход по току железохромистого осадка показало, что при показателе асимметрии β = 5–6 наблюдается максимальный выход по току 85–88%. Плотность катодного тока при оптимальном значении показателя асимметрии может быть доведена до весьма больших величин D₁=40–50 А/дм², что позволяет получить скорость осаждения железохромистого покрытия до 0,7 мм/ч.

При этих режимах электролиза качество покрытий (отсутствие трещин) остается достаточно высоким.

В работе было исследовано влияние концентрационных изменений в электролите и влияние режимов электролиза на состав и структуру гальванических осадков. Увеличение концентрации азотнокислого хroma в электролите приводит к практическому пропорциональному повышению содержания хрома в гальваническом осадке (рис. 1).

Рис. 1. Зависимости содержания хрома в гальваническом осадке от концентрации азотнокислого хroma в электролите при различных концентрациях сернокислого железа:
1–250 кг/м³; 2–300 кг/м³; 3–350 кг/м³; 4–400 кг/м³.

Кроме состава электролита на содержание хрома в железохромистых осадках заметно влияют режимы электролиза. Наибольшее влияние на эту характеристику оказывает величина коэффициента асимметрии, в меньшей степени – плотность катодного тока. Максимальное содержание хрома при прочих равных условиях получается в гальваническом покрытии при β = 6 и D₁ = 40 А/дм². Дальнейшее увеличение значений как коэффициента асимметрии, так и плотности катодного тока не вызывает повышения содержания хрома в покрытии, но приводит к ухудшению структуры (появлению большого количества дефектов). По- вышение температуры электролита приводит во всех случаях к снижению концентрации хрома в осадке.

Результаты проведенного эксперимента позволяют рекомендовать следующие оптимальные режимы электроосаждения железохромистых покрытий: плотность катодного тока D₁=40–50 А/дм², коэффициент асимметрии β=6 и температура электролита t=20°С. Содержание хрома в покрытии целесообразно регу-
лизировать введением в электролит того или иного количества азотной кислоты соли при концентрации FeSO₄ ≈ 300–350 кг/м³.

При комплексном подходе к поверхностному упрочнению стальных изделий, т.е. нанесении электролитического покрытия и его последующей ионизации, задача операции электроосаждения сводится к получению возможно большей скорости осаждения. При этом также необходимо стремиться к получению плотной структуры и хорошего сцепления покрытия с основой, что положительно сказывается на свойствах упрочненных деталей.

Экспериментальные исследования показывают, что железохромистым покрытием, полученным на асимметричном токе при всех режимах осаждения, в той или иной степени присутствует слоистое строение (рис. 2). Увеличение степени прочности покрытия (толщины слоев) сопровождается снижением его плотности и ухудшением механических свойств. Причиной этого явления, по всей вероятности, является накопление в покрытии дефектов, чему способствует высокая скорость электрокристаллизации и низкая температура процесса.

![Рис. 2. Микроструктуры железохромистых покрытий, полученных на асимметричном токе (β=6)
при различных плотностях катодного тока: а – 10 A/dм²; б – 40 A/dм² (x300)](image)

Неотъемлемым свойством гальванических осадков является наличие в них внутренних растягивающих напряжений, значительно снижая усталостные характеристики, а также отрицательно влияющие на твердость, износостойкость и другие свойства. Рациональным методом, который позволит устранить все недостатки, присущие гальваническим покрытиям, обеспечить их высокую износостойкость и улучшить их эксплуатационные характеристики, может быть химико-термическая обработка, в частности низкотемпературное цианирование.

Наибольший эффект цианирования достигается при Т = 923 К, что соответствует наибольшей толщине диффузионного слоя. Температура цианирования решающим образом влияет не только на толщину карбонитридной зоны диффузионного слоя, но и на фазовый состав этой зоны. При относительно низких температурах цианирования (823–873 К) карбонитридные зоны представлены, в основном, карбонитридами γ, толщина этих зон невелика. При повышении температуры до 923 К в карбонитридных зонах преобладает карбонитрид ε (80–85%), и толщина этих зон значительно увеличивается.

Гексагональный карбонитрид ε согласно [3] обла- дает самой широкой областью гомогенности по сравнивению с другими карбонитридами системы Fe-C-N, поэтому здесь имеются лучшие условия для диффузии азота и углерода в покрытие и образуется карбонитридная зона большой толщины (0,050 мм за два часа).

Ниже зоны карбонитрида ε в диффузионном слое цианированных электролитических покрытий обоих видов имеется прослойка с азотисто-углеродистым остаточным аустенитом пониженной твердости (3000–4500 МПа). Толщина этой прослойки составляет 0,015–0,020 мм.

Металлографические исследования Fe – Cr сплава после цианирования показали (рис. 3), что в поверхностном слое покрытия образуется карбонитридная зона толщиной до 0,5 мм с микротвердостью 12000–13000 МПа.

![Рис. 3. Микроструктуры диффузионных слоев, полученных при низкотемпературном цианировании: а – 823 К; б – 923 К (x200)](image)
Рис. 4. Зависимости твердости (a) и толщины диффузионных слоев (b) на электролитических сплавах от длительности цианирования (T=923 K):

- Fe+1,5% Cr;
- Fe+2,5% W

Объяснить такую зависимость твердости электролитических покрытий от длительности процесса цианирования можно, по-видимому, особенностями кинетики совместного насыщения стали азотом и углеродом. Согласно [3] на первой стадии процесса главную роль в образовании твердой фазы (карбонитридной зоны) играет азот, который, благодаря большей растворимости в аустените и большей диффузионной подвижности, способствует образованию карбонитридной фазы, богатых азотом и обладающих повышенной твердостью.

По мере насыщения стали углеродом, чему во многом способствует азот, так как ускоряет диффузию углерода, наступает этап, характеризуемый ускоренным ростом углеродистых фаз, обладающих большей термодинамической устойчивостью по сравнению с азотистыми фазами. Происходит некоторое деплотирование цианированного слоя и, как следствие, снижение его твердости. Углерод, поступающий из внешней среды, только незначительно увеличивает толщину твердой корки, а в основном диффундирует в глубину электролитического покрытия, тем более, что в исходном состоянии в этом покрытии углерод практически нет.

Важной характеристикой, определяющей долговечность восстановленных деталей, является их износостойкость. Зависимости износа цианированных слоев на железохромовых и железовольфрамовых электролитических покрытиях от длительности цианирования представлены на рис. 5.

Рис. 5. Зависимости износа цианированных электролитических покрытий Fe-Cr (1) и Fe-W (2) при трении без смазки от времени цианирования

Характер зависимостей, представленных на рисунке, свидетельствует, что износостойкость цианированных слоев в условиях трения без смазки полностью определяется их твердостью. Следует отметить, что цианированные поверхности обладают очень высокой стойкостью против защиривания и схватывания. Образцы (ролики на машине трения СМЦ-2) с электролитическими покрытиями без цианирования получили первые следы задира при удельных нагрузках ~ 0,7 МПа; закаленные стальные образцы 40X при 1,5 МПа; у цианированных образцов, даже при небольшой длительности обработки, значение этого показателя не опускалось ниже 4 МПа.

Выводы
Цианирование электроосажденного легированного железа позволяет получить карбонитридные слои значительной толщины, имеющие твердость до 13000 МПа, а также высокую износостойкость (в 5–6 раз выше износостойкости покрытий без цианирования).

Результаты исследования цианирования электролитических сплавов, применяемых при восстановлении изношенных деталей машин, послужили основой для разработки технологии упрочнения деталей, удобной для ремонтного производства, позволяющей значительно повысить их долговечность, а следовательно, и надежность отремонтированных машин

Список литературы

Bibliographic

УДК 621.777-621.771.22
Сидельников С.Б., Довженко Н.Н., Трифоненков Л.П., Перухин М.В., Баранов В.Н., Лопатина Е.С., Довженко И.Н., Беспалов В.М.

ИССЛЕДОВАНИЕ СТРУКТУРЫ МЕТАЛЛА И ОЦЕНКА СВОЙСТВ ОПЫТНЫХ ОБРАЗЦОВ ИЗ СПЛАВА СИСТЕМЫ Al–Zr ДЛЯ ПРОИЗВОДСТВА ЭЛЕКТРОПРОВОДНИКОВ С ПОМОЩЬЮ МЕТОДОВ ЛИТЬЯ И ОБРАБОТКИ ДАВЛЕНИЕМ

Представлены результаты экспериментальных исследований влияния технологии литья, качества шихтовых материалов и методов обработки на свойства и структуру литьих и деформированных полуфабрикатов из сплава системы Al–Zr. Изучена структура и свойства металла образцов, полученных с использованием операций литья, совмещенной прокатки-прессования, горячей сортовой прокатки, волочения и отжига. Приведены данные и по прочностным, пластическим свойствам полученных образцов, их микротвердости и удельному электросопротивлению. Проведен сравнительный анализ влияния методов обработки на механические и электрофизические свойства полуфабрикатов и сделаны выводы о практическом применении исследуемого сплава для производства электропроводников.

Ключевые слова: переходные металлы, алюминиевые сплавы, совмещенные процессы, литье, прокатка, прессование, волочение, отжиг, механические свойства, структура, удельное электросопротивление.

The results of experimental studies on the effect casting technology, the quality of charge materials and processing techniques on the properties and structure of the cast and deformed semi-finished products of Al-Zr alloy. The structure and properties of the metal samples produced using casting operations, combined rolling-extrusion, combined casting and rolling-extrusion, hot flat-and-edge rolling, wire drawing and annealing was studied. The data concerning strength, plastic properties, microhardness and electrical resistivity of the samples obtained were presented. A comparative analysis of the influence of processing methods on the mechanical and electrical properties of semi-finished products was carried out and the conclusions about practical application for electric conductors of the alloy studied were made.

Key words: transition metals, aluminum alloys, combined processes, casting, rolling, extrusion, drawing, annealing, mechanical properties, structure, electrical resistivity.

В связи с изменением требований потребителей по механическим свойствам к деформируемым полуфабрикатам, используемым в силовых кабелях и проводах токопроводящих жил, резко возрастает потребление электротехнической катанки из сплавов алюминия. Реализуемая на рынках катанка для производства проводов и кабелей из сплава марки АВ и АБ имеет в качестве литетирующих добавок кремний и магний, которые увеличивают прочностные характеристики, но существенно снижают электрическую проводимость проводов. С целью снижения потерь при передаче электроэнергии необходимо разрабатывать новые алюминиевые сплавы, которые должны при высокой механической прочности иметь удовлетворительные характеристики по электропроводности. Перспективы расширения рынков сбыта проводов с новыми свойствами, прежде всего в замене алюминиевых линий электропередач, развивавшихся вокруг ресурс, переводе линий электропередач на изолированные провода или провода со специальными свойствами (стойкими к погодным условиям, обеднению, условиям высокой вибрации, высокой или низкой температуре). В связи с низкой стоимостью проводов из алюминиевых сплавов по сравнению с медными также имеется перспектива замены части медных силовых кабелей на кабели с использованием проводов из новых алюминиевых сплавов.

Основными методами получения деформированных полуфабрикатов из алюминиевых сплавов являются методы непрерывного литья-прокатки и использования литейно-прокатных агрегатов (ЛПА) и методы совмещенной обработки с использованием операций непрерывного литья, прокатки и прессования [1–3]. Существующие литейно-прокатные комплексы не обладают всем необходимым оборудованием для получения годной продукции из алюминиевых сплавов с повышенными прочностными характеристиками в виде катанок с заданными свойствами и надежно повторяемым качеством. Поэтому с разработке технологии получения деформированных полуфабрикатов из алюминиевых сплавов с рекомендуемыми [4] и переходными металлами, обладающими комплексом новых физических свойств, целесообразно использование высокопроизводительных и энергоемких методов совмещенной обработки. Проведенные исследования, таким образом, были направлены на изучение влияния особенностей технологии получения литьих и деформированных полуфабрикатов с применением этих методов на механические и электрофизическіе свойства образцов из сплавов системы Al – Zr, в которых в качестве основного легирующего элемента был выбран цирконий с содержанием его в сплаве в количестве 0,1–0,3 масс. %.

Для приготовления сплавов электротехнического назначения использовали цирконий в виде брикетов (80% Zr, осталльное – флюс) фирмы HOESH и сплавленную литературу Al–Zr галландского производства фирмы KBM (рис. 1).
Для металлографического исследования сплавленной литургии Al–Zr были вырезаны два образца: из середины литургической плитки и верхней прикорковой зоны. Макроструктуру литургии изучали путем визуального осмотра и с применением стереоскопического микроскопа Stemi 2000-C, Carl Zeiss.

Микроскопический анализ литургии проводили на микроскопе Axio Observer.A1m (Carl Zeiss). Микротрешины изготавливали на автоматизированных шлифовально-полировальных станках Saphir 520, Germany, и выходных материалах фирмы Lam Plan, France, по методикам, предоставленным ООО «Митэла». Микротрешины травили в растворе фтористоводородной кислоты.

Количественную оценку микроструктуры проводили с помощью программы для анализа цифровых изображений AxioVizion (Carl Zeiss) с использованием измерительных модулей Interactive Measurement (Program Wizard).

Визуальный осмотр литургии показал, что на поверхности наблюдается небольшое количество пор размером до 3,3 мм. На шлифах исследуемых образцов из середины литургической плитки наблюдаются однородно распределенные кристаллы Al2Zr, размеры и характер распределения алюминидов различны. В образцах, вырезанных из прикорковой зоны, структура более неоднородная, а по сечению наблюдаются более мелкие кристаллы Al2Zr.

Микроструктура исследуемой литургии представляет собой твердый раствор на основе алюминия и до-статочно крупные интерметаллические частицы Al2Zr, закристаллизовавшиеся по перитектической реакции в виде игл.

Стереометрический анализ литургии Al–Zr представлен в табл. 1.

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Результаты стереометрического анализа литургии Al–Zr</td>
</tr>
<tr>
<td>Количество характеристик микроструктуры</td>
</tr>
<tr>
<td>Средний размер частиц Al2Zr, мм</td>
</tr>
<tr>
<td>Минимальный размер частиц Al2Zr, мм</td>
</tr>
<tr>
<td>Максимальный размер частиц Al2Zr, мм</td>
</tr>
<tr>
<td>Объемная доля частиц Al2Zr, %</td>
</tr>
<tr>
<td>Средняя площадь частиц Al2Zr, мм²</td>
</tr>
</tbody>
</table>

Приготовление новых низколегированных алюминиевых сплавов с добавками циркония осуществляли в высокочастотной плавильной установке. Предварительно просушенную литургию Al–Zr расчетной составля и массы вводили под зеркало расплава, предварительно нагретого до температуры 750–900 °C. Расплав тщательно перемешивали от 1 до 3 мин и после этого подвергали выдержке в печи в интервале 5–20 мин. Полученный сплав разливали в подогретые изложницы.

Макроструктура слитков преимущественно состоит из зоны столбчатых кристаллов, а в центре слитка наблюдаются крупные равноносные кристаллы (рис. 2).

Рис. 1. Внешний вид и макроструктура цирконий содержащих литург Al–Zr:
а – порошковая; б – сплавленная

Рис. 2. Макроструктура слитков Al–Zr, полученных на порошковой литурге:
а – температура плавки 800±100С, время выдержки 5 мин; б – температура плавки 800±100С, время выдержки 10 мин

Далее из полученных слитков получали деформированные полуфабрикаты в виде прутков диаметром 9 мм по следующим технологическим схемам:
– горячая сортовая прокатка (ГСП) из литой заготовки размерами 14х14 мм;
– совмещенная прокатка-прессование (СПП) из литой заготовки диаметром 15 мм, полученной с использованием электромагнитного кристаллизатора;
– совмещенная прокатка-прессование (СПП) литой заготовки размерами 14х14 мм;
– совмещенное литье и прокатка-прессование (СЛПП). С целью исследования изменения механических свойств деформируемых полуфабрикатов при промежуточной деформации пруток, полученный по различным методам, подвергали волочению. При этом изготавливали проволоку диаметром 2 мм, которую затем подвергали отжигу по ступенчатому режиму.

Сортовую проволоку проводили на сортопрессовом стане AMBIFOLO VELOCO ROSEN с диаметром валков 130 мм, при этом литую заготовку нагревали в электрической печи до температуры 550 °C, прокатывали в калибрах и получали пруток диаметром 9 мм.

Совмещенные прокатка-прессование осуществляли на экспериментальной установке совмещенной обработки, смонтированной на базе прокатного стана дуо 200 с диаметром валков 200 мм [1,4]. При этом в первом случае использовали литые заготовки, полученные в ЭМК, а во втором – заготовки, отлитые в изложнице. В соответствии с технологией обработки заготовки нагревали в электрической камере печи до температуры 550 °C и задавали их в калибр валкок экспериментальной установки. К валкам с помощью гидроцилиндра была поджата матрица с калибрующим отверстием диаметром 9 мм, поэтому в качестве готового изделия получали прутки круглого сечения указанного размера.

Технологию совмещенного литья и прокатки-прессования реализовали на той же экспериментальной установке, однако в валки в этом случае заливали
расплава металла, который последовательно кристаллизовался в калибре вращающихся валков, обжимался ими и выдавливался через матрицу в виде горячепрессованного прутка диаметром 9 мм.

Волочение проводили из полученных заготовок в виде прутков и катанки на цепном стане без промежуточных отжигов и получали проволоку диаметром 2 мм. Далее производили отжиг проволоки сначала при температуре 300°С, а затем при температуре 450°С при фиксированном времени выдержки.

Для исследований механических свойств деформируемых полуфабрикатов использовали универсальную электромеханическую машину ЛФМ-400 усилием 400 кН. Свойства литьих, деформированных и отожженных полуфабрикатов приведены в табл. 2.

Таблица 2

<table>
<thead>
<tr>
<th>№</th>
<th>Метод</th>
<th>Механические свойства прутка диаметром 9 мм и литьей заготовки</th>
<th>Механические свойства проволоки диаметром 2 мм в деформированном и отожженном состоянии</th>
<th>Удельное электросопротивление проволоки, Ом·мм²/м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>гсп</td>
<td>104,9 68,1</td>
<td>18,8 34,3</td>
<td>182,9 66,7</td>
</tr>
<tr>
<td>2</td>
<td>гсп</td>
<td>105,9 64,1</td>
<td>17,3 42,2</td>
<td>186,0 67,4</td>
</tr>
<tr>
<td>3</td>
<td>гсп</td>
<td>101,4 61,3</td>
<td>18,6 21,7</td>
<td>180,8 64,6</td>
</tr>
<tr>
<td>4</td>
<td>гсп</td>
<td>100,6 61,8</td>
<td>19,0 24,1</td>
<td>187,2 63,5</td>
</tr>
<tr>
<td>5</td>
<td>гсп</td>
<td>106,2 60,9</td>
<td>23,8 25,1</td>
<td>186,0 65,5</td>
</tr>
<tr>
<td>6</td>
<td>гсп</td>
<td>102,5 63,2</td>
<td>18,1 31,0</td>
<td>190,7 66,6</td>
</tr>
<tr>
<td>7</td>
<td>гсп</td>
<td>103,1 65,7</td>
<td>21,7 35,0</td>
<td>186,3 61,2</td>
</tr>
<tr>
<td>8</td>
<td>гсп</td>
<td>101,0 58,4</td>
<td>23,8 21,5</td>
<td>180,9 61,2</td>
</tr>
<tr>
<td>9</td>
<td>гсп</td>
<td>127,5 68,1</td>
<td>18,4 34,3</td>
<td>227,0 70,0</td>
</tr>
<tr>
<td>10</td>
<td>гсп</td>
<td>117,7 64,1</td>
<td>23,5 42,2</td>
<td>219,9 72,0</td>
</tr>
<tr>
<td>11</td>
<td>гсп</td>
<td>116,5 61,3</td>
<td>22,0 21,7</td>
<td>228,0 76,4</td>
</tr>
<tr>
<td>12</td>
<td>гсп</td>
<td>126,3 61,8</td>
<td>18,7 32,0</td>
<td>222,4 74,8</td>
</tr>
<tr>
<td>13</td>
<td>гсп</td>
<td>120,8 69,9</td>
<td>16,2 28,1</td>
<td>226,6 69,1</td>
</tr>
<tr>
<td>14</td>
<td>гсп</td>
<td>130,5 63,2</td>
<td>13,9 31,0</td>
<td>230,8 76,5</td>
</tr>
<tr>
<td>15</td>
<td>гсп</td>
<td>117,8 65,7</td>
<td>19,5 36,0</td>
<td>226,1 61,8</td>
</tr>
<tr>
<td>16</td>
<td>гсп</td>
<td>127,4 68,1</td>
<td>23,8 42,2</td>
<td>228,2 72,0</td>
</tr>
<tr>
<td>17</td>
<td>гсп</td>
<td>123,7 62,5</td>
<td>17,3 38,8</td>
<td>212,8 72,0</td>
</tr>
<tr>
<td>18</td>
<td>гсп</td>
<td>125,2 61,4</td>
<td>16,9 39,5</td>
<td>217,7 74,7</td>
</tr>
<tr>
<td>19</td>
<td>гсп</td>
<td>138,2 60,7</td>
<td>20,3 33,0</td>
<td>237,0 78,5</td>
</tr>
</tbody>
</table>

Результаты исследования микроструктуры металла опытных образцов, полученных различными методами, приведены на рис.3–5.

Рис. 3. Микроструктура литой заготовки (а), прутка (б) и проволоки (в) опытного образца №5, полученного методом ГСП (х500)

Рис. 4. Микроструктура литой заготовки (а), прутка (б) и проволоки (в) опытного образца №17, полученного методом СПП (х500)

Рис. 5. Микроструктура прутка (а) и проволоки (б) опытного образца №21, полученного методом СПЛИП (х500)

Микроструктура исследуемых слитков для образцов 1-16 представляет собой дендриты α-твердого раствора, избыточные двойные и тройные фазы (рис. 3, а). Избыточные фазы расположены по границам зерен и дендритных ячеек, имеют пластинчатую, скелетную и сферическую форму. Микроструктурным методом анализа не выявлено различий в структуре сплавов исследуемых слитков. В микроструктурах сплавов системы Al-Zr обнаружены дисперсные (менее 10 мкм) включения игольчатого строения. Вследствие невысокого разрешения оптического микроскопа, выявленные фазы были детально исследованы на растровом электронном микроскопе. Форма и расположение первичных кристаллов Al₁Zr₁, обнаруженных в микроструктуре исследуемых слитков, свидетельствует о том, что частицы цирконевой фазы не растворились при получении расплава в исследуемом диапазоне температур. Таким образом, исследуемые температуры плавки и заливки расплава для образцов 1-16 недостаточны для растворения введенных в виде порошковой литографии интерметаллидных частиц Al₁Zr₁, что подтверждается данными работы [5]. В слитке образца 17, который был получен при температурах плавки и заливки, рекомендуемых в работе [5] в интервале 800–900°C, по результатам микроско-
Материаловедение и термическая обработка металлов

Прического анализа частицы Al₃Zr не обнаружены (рис. 4, а). Результаты микрорентгеноспектрального анализа (рис. 6) также подтвердили, что в свитке образца 17 фаз, содержащих цирконий, не наблюдается. Микроструктура состоит из дендритов α-твердого раствора на основе алюминия и избыточных фаз AlF и AlFeSi с присутствием в них кислорода (табл. 3).

Таблица 3
Результаты микрорентгеноспектрального анализа для литого образца 17 из сплава Al-Zr

<table>
<thead>
<tr>
<th>Спектр</th>
<th>O</th>
<th>Al</th>
<th>Si</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Спектр 1</td>
<td>3.70</td>
<td>92.42</td>
<td>1.28</td>
<td>2.60</td>
</tr>
<tr>
<td>Спектр 2</td>
<td>5.95</td>
<td>87.41</td>
<td>1.16</td>
<td>5.48</td>
</tr>
<tr>
<td>Спектр 3</td>
<td>3.24</td>
<td>95.57</td>
<td>1.18</td>
<td>–</td>
</tr>
</tbody>
</table>

Металлографический анализ деформированных полуфабрикатов (образцы 1–16) в виде прутков для технологии ГСП (рис. 3, б) и СПП показал, что микроструктура всех образцов состоит из α-твердого раствора и дисперсных частиц фаз AlFe, AlFeSi и Al₃Zr. При деформации прутков форма и размеры интерметаллических фаз Al₃Zr существенно не изменились по сравнению со строением включений в слитках. В деловом сечении прутка наблюдается ориентированность частиц железосодержащих фаз и включений Al₃Zr в направлении оси деформации. Микроструктура деформированных полуфабрикатов, полученных СПП и сортовой прокаткой, не имеет различий. Исследования также показали, что прутки, изготовленные из литого образца 17 (рис. 4, б), сохраняют те же структурные составляющие, что и в литом состоянии, при этом фазы Al₃Zr не обнаружено.

Исследование проволоки, полученной волочением из прутков, изготовленных двумя методами: ГСП и СПП, показало, что в деловом сечении проволоки наблюдается строение, схожее с расположением дисперсных частиц избыточных фаз, раздробленных при холодном волочении в направлении оси деформации (рис. 3, в). Волочение проволок привело к изменению включений Al₃Zr и вытягиванию их в строи. В проволоке, полученной из прутков после сортовой прокатки, обнаружена строенность структуры в виде скоплений частиц Al₃Zr, которая является причиной расслоения в данном изделии. В проволоке, изготовленной из прутков после СПП, расслоений не обнаружено (рис. 4, в).

Таблица 4
Результаты измерения микротвердости деформированных полуфабрикатов Al–Zr, изготовленных различными методами, кГс/мм²

<table>
<thead>
<tr>
<th>№ образца</th>
<th>ГСП: проволок</th>
<th>СПП: проволок</th>
<th>СПП: проволок</th>
<th>ГСП: проволок</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43,5±1,6</td>
<td>43,2±1,3</td>
<td>43,4±0,5</td>
<td>43,1±0,9</td>
</tr>
<tr>
<td>2</td>
<td>43,8±1,3</td>
<td>44,4±0,5</td>
<td>43,6±0,9</td>
<td>43,1±0,9</td>
</tr>
<tr>
<td>3</td>
<td>41,0±1,1</td>
<td>42,7±2,2</td>
<td>43,2±0,7</td>
<td>43,1±0,9</td>
</tr>
<tr>
<td>4</td>
<td>42,3±0,4</td>
<td>43,6±0,9</td>
<td>43,1±0,8</td>
<td>43,1±0,9</td>
</tr>
<tr>
<td>5</td>
<td>43,8±0,3</td>
<td>42,7±0,7</td>
<td>43,1±0,8</td>
<td>43,1±0,9</td>
</tr>
<tr>
<td>6</td>
<td>42,0±1,0</td>
<td>43,7±0,8</td>
<td>44,6±1,2</td>
<td>43,5±1,9</td>
</tr>
<tr>
<td>7</td>
<td>44,2±0,9</td>
<td>43,5±1,0</td>
<td>44,9±0,9</td>
<td>43,1±0,7</td>
</tr>
<tr>
<td>8</td>
<td>43,8±0,8</td>
<td>43,6±1,3</td>
<td>43,1±0,8</td>
<td>43,1±0,7</td>
</tr>
</tbody>
</table>

Таким образом, микроструктура полуфабрикатов, полученных по технологии совмещенной прокатки – прессования и последующего волочения, зависит от качества слитка и метода его получения. Если исходная структура слитка не содержит интерметаллических частиц Al₃Zr, то и в деформированном состоянии их не наблюдается. Использование электромагнитного кристаллизатора позволяет уменьшить величину зерна и получить более высокие прочностные и пластические характеристики (см. табл. 2).

Структура всех образцов прутков, полученных по методу СПП, характеризуется неоднородным распределением фаз по сечению алюминиевого твердого раствора (рис. 5, а). В отличие от прутков, полученных методом СПП, здесь наблюдаются более грубые скопления железосодержащих частиц и алюминидов циркония. Кроме того, в прутках обнаружены мелкие частицы Al₃Zr, чего не наблюдалось в слитках и деформированных заготовках данной плавки, полученных другими методами. Частички алюминида вытянуты вдоль направления деформации. Выделение некоторого количества включений Al₃Zr, по-видимому, связано с затяжением температуры при переплаве сплава для СЛПИП. Холодное волочение при получении проволоки приводит к дроблению частиц Al₃Zr, в результате чего они образуются строи из мелких частиц, близких к окружной форме, тогда как в прутках, полученных СЛПИП, большинство частиц имеет игольчатую форму. Неравномерность распределения структурных составляющих наблюдается в образцах из прутка и СПП (рис. 5, б).

Измерения микротвердости (табл. 4) деформированных полуфабрикатов, полученных различными методами, показали, что наибольшие значения микротвердости наблюдаются у изделий, полученных методом СПП. Уровень значений микротвердости для образцов, полученных методами ГСП и СЛПИП, несколько ниже. Кроме того, установлено, что с увеличением степени холодной деформации также наблюдается повышение микротвердости.

54 — Вестник МГТУ им. Г. И. Носова. 2012. № 1.
Таким образом, по результатам работы можно сделать следующие выводы:
Сплавы алюминия с содержанием циркония 0,1-0,3% могут применяться для изготовления электропроводников с повышенными механическими и электрофизическими свойствами, при этом временного сопротивления разрыву для горячеформованных полуфабрикатов достигает максимальных значений порядка 130 МПа, для холоднодеформированных – 230 МПа, а удельное электросопротивление для них находится в диапазоне 0,0285–0,0295 Ом·м²/м.

Разработаны режимы литья и технологии приготовления новых сплавов с применением сплавленных и порошковых лигатур [6].
Повышенные прочностные характеристики наблюдаются у образцов из новых сплавов, полученных по технологиям совмещённой обработки, причем получение заготовки с применением литья в электромагнитный кристаллизатор и обработка методом СПН дает возможность получить мелкозернистую однофазную структуру металла и наиболее высокие значения временного сопротивления разрыву и относительного удлинения. Однако результаты исследований на этих образцах удельного электросопротивления показали сравнительно высокие значения этого параметра.
Применение метода СЛИПП, несмотря на неоднородное распределение фаз по сечению алюминиевого твердого раствора, дает возможность получить достаточно хорошее сочетание прочностных, пластических и электрофизических характеристик.
Проведение двухступенчатого отжига проволоки, полученной холодным волочением со степенями деформации до 70%, дает возможность восстановить пластические свойства металла и снизить значения удельного электросопротивления.
Исследования проведены при реализации государственной программы поддержки развития кооперации и использования субсидий ФГАОУ ВПО “Сибирский федеральный университет” и ООО “РУСАЛ ИТЦ”, совместно участвующих в рамках договора №13.G25.31.0083 с Министерством образования и науки России в выполнении комплексного проекта по созданию высокотехнологичного производства.

Список литературы

5. Прокоров А.Ю., Белов Н.А., Абакин А.Н. Особенности технологии плавки и литья сплавов проводниковых алюминиево-циркониевых сплавов в промышленных условиях / Литейщик России. 2010. №4. С. 30–34.

Bibliography

МАШИНОСТРОЕНИЕ. НАДЕЖНОСТЬ И ДОЛГОВЕЧНОСТЬ ОБОРУДОВАНИЯ

МАШИНОСТРОЕНИЕ. НАДЕЖНОСТЬ И ДОЛГОВЕЧНОСТЬ ОБОРУДОВАНИЯ

УДК 621.771.07
Белевский Л.С., Исмагилов Р.Р.

ПУТИ ПОВЫШЕНИЯ СЛУЖЕБНЫХ СВОЙСТВ ВАЛКОВ СТАНОВ ХОЛОДНОЙ ПРОКАТКИ

Одним из путей борьбы с наваром, возникающим при прокатке складки, может быть использование валковых материалов, обладающих «противонаварными» свойствами. Приведены результаты испытаний партии рабочих валков из стали 9Х2С2М и индифферентных чугунных на стане 1200, а также литников и литых валков из стали электролитового переплава на станах холодной прокатки 1200, 2500 и 400.

Ключевые слова: холодная прокатка, валки, складка, напряжения, электрошлаковый переплав.
One of the ways to prevent the build-up sludge during rolling of fold. Can make use new materials. The results of testing of rolls made from steel 9X2C2M and indefinite on mill 1200 and casting rolls on cold mills 1200, 2500 and 400 has been present.

Key words: cold mill, rolls, fold, stress, electroslag remelting.

Валки работают в условиях одновременного действия контактных, изгибающих, остаточных, температурных напряжений и крутящего момента. Настойчивость валков большое влияние оказывают контактные напряжения. Под действием переменных контактных нагрузок в поверхностных слоях рабочих валков проявляются необратимые физические процессы, которые носят локальный характер. Наряду с упругой деформацией в закаленной стали отмечается и пластическая деформация.

Неоднородная интенсивность деформации по глубине контактной зоны создает концентрацию напряжений внутри наклепанного закаленного слоя. Это приводит к исчерпыванию пластических свойств поверхностного слоя. Продолжающееся действие внешних нагрузок способствует усталостному разрушению контактирующих поверхностей.

Дефекты и повреждения валков холодной прокатки связаны с особенностями их изготовления и эксплуатации. Поверхностные дефекты валков можно разделить на две группы: устраиваемые при перешлифовке (порезы, вмятины, хвосты, небольшие навары, мелкая сетка трещин, мелкие вкраплений и др.) и вызывающие окончательный выход валков из строя (грубые навары, отслоения, отколы, трещины, поломка бочки и шек и др.).

Навар рабочих валков холодной прокатки является одной из причин их преждевременного списания. Навары образуются вследствие появления перед входом в зев валков складки металла, которая начинает втягиваться в очаг деформации. В этот момент резко увеличивается угол захвата, что ведет к соответствующему увеличению протяженности очага деформации и повышению удельного давления в нём. Рост удельного давления способствует выходу смыкки, находящейся между валком и прокатываемым металлом, и резко повышению температуры до 1300°С в очаге деформации, из-за чего металл валка схватывается с металлом прокатываемой полосы. Одновременное действие высоких механических напряжений и высокой температуры в месте навара, а также резкое падение температуры при охлаждении валка эмульсией приводят к появлению трещин на поверхности валка и «пятнистой» твердости. Сильные навары, полученные при схватывании валков прокатываемым металлом, вызывают следующие отслоения или глубокое вкраплений, приводящее к окончательному выходу валка из строя [1, 2].

Одним из распространенных дефектов валков холодной прокатки, прошедших поверхностную закалку, являются отслоения, которые обычно наблюдают на поверхности бочки, контактирующей с прокатываемым металлом. Обычно глубина местных отслоений и кругового скольжения бочки находится в пределах 5–25 мм. Значительная часть отслоений наблюдается в тех местах поверхности валка, в которых ранее произошел навар.

Для повышения стойкости валков и их служебных свойств возможны следующие пути:
- применение валковых материалов, обладающих меньшей склонностью к наварам;
- создание новых, более износостойких материалов и совершенствование технологии изготовления валков с целью обеспечения большей глубины закаленного слоя и его равномерной твердости;
- применение бандажированных валков.

Бандажированные валки на станах холодной прокатки используются в качестве опорных, хотя известны случаи применения бандажированных рабочих валков небольших размеров [3].

Основные достоинства бандажированных валков следующие:
- возможность изготавливать бандаж из особоискусных материалов, а ось — из высокопрочных сталей, способных выдерживать длительные циклические нагрузки;
- термическая обработка бандажа производится отдельно, что позволяет получить почти одинаковую твердость по всей толщине бандажа и снизить гради-
ент остаточных напряжений, который в сплющенном валке большой массы весьма высок;
– посадочная поверхность оси после сборки может подвергаться дополнительной обработке с целью ее упрочнения, нанесения покрытий и др. для повышения несущей способности соединения с натягом;
– возможность замены изношенного бандажа при многократном использовании оси.

Изготовление валков из новых материалов или в бандажированном исполнении требует расчета напряжений, которым они будут подвергаться. Особенно важно знать величины напряжений в аварийных ситуациях, например при прохождении троинской складки. Следует отметить, что влияние складки на полосе исследовалось еще в 60-х годах прошлого века поляризационно-оптическим методом [4]. Использование возможностей систем компьютерной математики позволяет определить напряжения расчетным путем. В работах [5, 6] исследовано напряженное состояние рабочего и опорного бандажированных валков стана 400 холодной прокатки при прокатке складки троиной толщины.

Было рассмотрено влияние прохождения троиной складки через клети непрерывного стана 400 холодной прокатки на напряженное состояние валков.

Для расчета определены силовые параметры прокатки отожженного металла в четырёх клетях [5]. Входная и выходная толщина полосы $h_0=0.28$ мм, $h=0.2$ мм, переднее и заднее нагружение $T_{p}=13$ кН, $T_{r}=10$ кН, диаметр рабочего валка $D=200$ мм, коэффициент трения $\mu=0.07$, материал – отожженная сталь 08кп. Закон упрочнения прокатываемого металла выращиваем следующей зависимостью: $\sigma_T = \sigma_0T^a + \sigma_0T^b$ [6, 7].

Для стали 08кп $\sigma_0T=23$, $a=3.4$, $b=0.6$. При этих коэффициентах σ_T получается в кГс/мм2, поэтому вычисленные значения σ_T следует переводить в Н/мм2. В результате решения уравнения прокатки получена эпюра контактного давления металла на валки и полное давление $P_{cm}=1.6326$ МН. Рассчитаны силовые параметры прокатки складки троинной толщины из отожженного металла в четверёх клетях, т.е. предполагаем, что порыв полосы произошёл в третем межклетевом промежутке.

В результате расчёта получены следующие данные: среднее давление в очаге деформации $P_{cm}=1080$ Н/мм2, длина дуги деформации $l=7.2146$ мм. Давление металла на валки $P_{cm}=2.343$ МН. Момент прокатки на один сплюснутый валок $M_{cm}=5440$ Нм.

При расчёте напряженно-деформированного состояния рабочего валка методом граничного или конечного элементов требуется иметь эпюры напряжений в месте контакта валков с металлом и с опорным валком. Дифференциальное уравнение троинистой прокатки имеет вид [8]:

$$
\frac{dp(x)}{dx} = \frac{d \sigma_g(x)}{dx} \pm \frac{\tau_s}{tg(\varphi_s)} \frac{h_s}{h_s},
$$

где $p(x)$ – удельное нормальное давление в сечении x по дуге захвата; τ_s – текущая координата; h_s – текущее значение толщины полосы в зоне контакта металла с рабочим валком; $\sigma_g(x)$ – характеристика кривой наклёпа в функции от x; τ_s – контактные напряжения в сечении x. Была реализована пятнадцатая эпюра напряжений $\tau(x)$. Упрогое сжатие рабочих валков при определении длины дуги деформации определялось по формуле Хиччока [8].

Уравнение интегрировалось решателем (solver) ode45 из системы компьютерной математики MATLAB [9]. Вызов решателя выглядит так: $p=ode45(\text{function}', [x_1, x_2, \ldots, x_n], p(0), a, b, c, R, h_1, h_2, l, \mu)$, где function – аналитическая запись правой части уравнения; $[x_1, x_2, \ldots, x_n]$ – массив аргументов, для которых надо найти решение; $p(0)$ – начальное значение для решения; $a, b, c, R, h_1, h_2, l, \mu$ – параметры, которые входят в правую часть уравнения.

Функция ode45 возвращает массив $p=[p_1, p_2, \ldots, p_n]$ решений при значениях независимой переменной x, взятых из массива $[x_1, x_2, \ldots, x_n]$.

По формуле Герца [10] определили ширину полосы контакта 2-b, рабочего и опорного валка:

$$
b = 1.522 \sqrt{\frac{q \cdot R \cdot R_{on}}{E (R + R_{on})}} \approx 2.3663 \text{ мм,}
$$

где $q=P_0$ – погонное давление; $R=250$ мм – радиус опорного валка; $E=2 \times 10^7$ Н/м2 – модуль Юнга.

Полученные данные позволяют рассчитать напряженное состояние бандажированных валков клети в критических нагрузках, возникающих при прокатке тройной складки, которая может образоваться при обрыве полосы. Знание величин максимальных напряжений и характеристика их распределения позволяет более обосновано подходить к выбору материала валков, наименее подверженного катастрофическим повреждениям в аварийных ситуациях.

На дуге контакта валка с металлом на него действуют нормальное и касательное напряжения, а в зоне контакта с опорным валком нормальное напряжение. Округлость, которая ограничивает сечение валка, неравномерно поделена на 530 дуг. Каждая дуга заменена отрезком прямой. Для тех отрезков, которые попадают в эпюру очага деформации и зону контакта с опорным валком, определены эквивалентные нормальные и касательные напряжения. Подробно процедура перехода к эквивалентным напряжениям описана в [12].

Напряжённое состояние в той части валка, которая контактирует с металлом (очаг деформации), показано на рис. 1, 2.

Наибольшего значения касательные напряжения достигают на разном расстоянии от поверхности валка для зоны отставания и опережения очага деформации.
Напряжение состояние опорного вала определено по методике, изложенной в работе [11]. Эпора контактных напряжений от действия рабочего вала на опорный представлена в виде косинусоиды, а погонное давление прокатки в 13614 Н/мм уравновешивается весом опорного вала. В расчетах принято: Dвас=200 мм, Dвас=500 мм, Dвас=340 мм, Eвас.=2.0·10⁵ Н/мм²; µпрогиб=0.3, δкат=0.4 мм. В процессе расчета окружные и радиальные напряжения в бандаже определялись как сумма напряжений от натяга и давления прокатки. Поверхность контактных напряжений, которая показывает качественный характер изменения напряжения, приведена на рис. 3, а линии равного уровня контактных напряжений – на рис. 4. Касательные напряжения σх достигают максимального значения в 530 Н/мм² на глубине в 1.25 мм от поверхности опорного вала.

Точки с максимальными касательными напряжениями расположены на дуге окружности ρ = 248.75 мм.

Радиальные и окружные напряжения в опорном валке достигают максимальных значений на прямой 225 ≤ r ≤ 250, ϕ=0. Количествоенный и качественный характер их изменения приведён на рис. 5.

Рис. 1. Поверхность касательных напряжений в бандаже рабочего вала в зоне контакта рабочего вала с металлом

Рис. 2. Линии равного уровня абсолютных значений касательных напряжений в зоне контакта рабочего вала с металлом

Рис. 3. Поверхность касательных напряжений в бандаже опорного вала в зоне контакта с рабочим валком 170 ≤ r ≤ 250, -2.82≤ϕ≤2.82

Рис. 4. Линии равных значений касательных напряжений в бандаже опорного вала в месте касания с рабочим валком: 225 ≤ r ≤ 250, -2.82 ≤ ϕ ≤ 2.82

Анализ данных проведенных расчетов показывает, что напряжения, возникающие при прокатке складки тройной толщины, даже в бандажированных валах не должны приводить к их разрушению. Установлено [1, 2], что причинной появления трещин при наваре является вторичная закалка, сопровождающаяся резким увеличением объема металла в тонком слое участка поверхности бочки. Поэтому одним из путей борьбы с наваром может быть использование валкового материала, обладающих «противонаварными» свойствами.

В России были попытки создания таких валков. Еще в 1966 г. С.А. Форсеников и С.П. Лисицын [14] предложили хромокремниемолибденовую сталь 9Х2СМ следующего состава: 0.85–0.95% C; 1.8–2.5% Cr; 1.6–2.4% Si; 0.15–0.30% Mo; 0.15–0.45% Mn; <0.30% Ni; <0.03% S; <0.03% P. За счет высокого содержания кремния повышена сопротивляемость стали к отпуску. Последнее позволило, не рискуя снизить твердость, повысить температуру отпуска валков до 300°C и более.
Рис. 5. Изменение нормальных (1) и окружных (2) напряжений по радиусу 225 ≤ r ≤ 250, φ=0 в бандаже спорного валка

Рабочие валки из стали марки 9Х2С2М были испытаны на стане 1200 Магнитогорского металлургического комбината. Навары бочки валков были снижены на 25-30%, общее повышение стойкости валков составило 40%. Однако из-за большого брака при изготовлении кованых валков из этой марки стали их изготовление было прекращено.

В зарубежной практике широкое распространение получил метод центробежного литья в двухслойном исполнении.

В ОАО «ММК» была поставлена опытно-промышленная партия индифферентных чугунных валков размером 500×1200 для стана 1200, изготовленных таким методом. Поверхность бочки отлива от чугуна с высоким содержанием ледебурита, легированного никелем, с мелким пластинчатым графитом и отпущенной бейнитово-ферритной матрицей; сердцевина валка состоит из чугуна со сфероидальным графитом. Валки обладают очень высокой износостойкостью и существенно увеличенной сопротивляемостью вращениям при авариях. На рис. 6 приведена микроструктура рабочего слоя бочки валков.

За время работы валков произошло шесть аварийных случаев, связанных с обрывом полосы между клетями и прокаткой складок. Но ни в одном случае наваров полосы на поверхность бочки не было.

Рис. 6. Микроструктура рабочего слоя бочки валков

Очевидно, что карбидомартенситно-бейнитная структура рабочего слоя бочки валка, большая его глубина, высокие прочностные свойства, минимальная склонность к свариванию позволяют уменьшить повреждаемость чугунных валков в аварийных ситуациях, повысить износостойкость по сравнению со стальными и, как следствие, увеличить общую стойкость прокатных валков станов холодной прокатки.

Успешный опыт эксплуатации чугунных индифферентных валков на стане холодной прокатки – это один из путей улучшения их служебных свойств.

Анализ показывает, что высокая работоспособность валков определяется, прежде всего, качеством металла, из которого они изготовлены, т.е. условиями выплавки и последующей обработки. Современная электросталь, в основном используемая для изготовления валков холодной прокатки, не всегда обеспечивает необходимый уровень свойств валков. Применение методов специальной электрометаллургии (вакуумного, дугового, электрошлакового и электронно-лучевого переплавов) способствует улучшению качества валковой стали. За последние годы появилось много модификаций электрошлакового переплава (ЭШП).

Выбор в качестве заготовки для изготовления рабочих валков холодной прокатки металла ЭШП основывается значительными его преимуществами перед металлом электродуговой выплавки [15]. При ЭШП валковая сталь очищается от неметаллических включений в 1,5-2,5 раза больше, в основном за счет уменьшения количества сульфидов, достигается меньшая микроповерхностность, повышенная плотность и равномерность структуры и, следовательно, равномерность свойств металла по сечению и высоте переплавленного слита. Сталь ЭШП характеризуется меньшей дendirтной неоднородностью и более равномерным распределением ликвирующих элементов.

Следует также отметить, что литая сталь ЭШП с меньшей структурой и химической неоднородностью обладает большей прокаливаемостью, имеет повышенную на 40-50% технологическую пластичность, по сравнению с обычной сталью ЭШП. Для металла ЭШП характерна тенденция к увеличению контактной выносливости, что обусловлено характером микроструктуры, степенью микроповерхностности и типом неметаллических включений.

В настоящее время на многих отечественных предприятиях металл, выплавленный в электропечах, разливается в слитки с последующим изготовлением электродов ковкой. Электроды подвергаются электрошлиаковому переплаву, при котором сечение слитка ЭШП выбирается таким, чтобы при последующей ковке обеспечивался укв бочки не менее 2,5 (при традиционной технологии укв бочки не менее 3,0). При такой технологии валки получают полностью в кованом исполнении – и бочка, и шейки.

Московским вечерним металлургическим институтом, ПО «Электростальмаш» и НПО «ЦНИИТМАШ» разработана технология изготовления валков в литкованом исполнении, при которой бочка остается в литом состоянии, а оттискаются только шейки.

Партия рабочих валков холодной прокатки с литой бочкой диаметром 400 мм и кованными шейками из металла ЭШП, изготовленная на ПО «Электростальмаш» при эксплуатации на непрерывном пятиклетевом стане 400х1200 ОАО НЛМК показала повышенную стойкость валков по сравнению с серийными коваными валками из стали открытой
выплавки в 1,4-1,6 раза. Максимальный развес слитков диаметром 420 мм составлял 2500 кг. Однако серийное внедрение этой технологии в ПО «Электростальзмаш» произошло только при выпуске всех валков диаметром с бочкой до 250 мм с развесом слитка 800-850 кг.

Процесс изготовления прокатных валков проводился на специализированном предприятии с корректировкой режимов ковки, предварительной термической обработки и закалки применительно к разным маркам стали [16].

Разработанные режимы термической обработки заготовок позволили получить почти одинаковые механические свойства литого и кованого металла. Это дает возможность изготавливать валки полностью в литом исполнении. С этой целью вырабатывается слиток диаметром 525 мм, длиной 3600 мм, массой 6695 кг. Подковка шее не производится. Далее слиток проходит термическую и механическую обработку.

Технологический процесс состоит из ЭШП отработанных валков в слитки круглого сечения под размер бочки с припуском, механической и термической обработкой. Этот способ разработан предприятиями ООО «ЮУТТ», ООО «УЗНО» (Уральский завод нестандартного оборудования) и ОАО «ММК». Размеры слитков ЭШП диаметром 530 мм и массой 8 000 кг, марки стали с содержанием хрома до 3,5%.

Изготовление валков в литом исполнении имеет целый ряд преимуществ перед исполнением в литоковом исполнении:

- полностью исключается дорогостоящий и трудоемкий процесс ковки шее, в результате чего уменьшается вероятность возникновения брака ковочного прохождения;
- способ может применяться на предприятиях, не имеющих мощностей ковочного оборудования;
- шейки литых валков менее подвержены травмированию при аварийных разрушениях подшипников, что может значительно сократить стоимость оборудования, а также более высокую прочность и пластичность в нагретом состоянии. Это объясняется устранением крупных межзеренных разрушений микрообъемов стали при тепловых ударах;
- снижение общей себестоимости изготовления валков, несмотря на повышение затрат на проведение механической обработки в среднем на 17%.

В литом исполнении изготовлены партии крупногабаритных рабочих валков размерами 500x1200 (масса 2,7 тн.), 500x2500 (масса 4,97 тн.) и 500x1700 (масса 3,7 тн.), а также опорные валки 500x400 (масса 1,13 тн.) из стали марок 9Х2МФ, 60Х2СМФ и с повышенным содержанием хрома 60Х3СМФ.

Аналит данных работы валков на стане «1200» показывает, что стойкость литьих валков превышает стойкость кованых на 16%. Несмотря на то, что опытные валки в 3,5 раза больше подвергались аварийным ситуациям (о чем свидетельствует процент списания валков по наварам), стойкость их также превышает стойкость кованых на 13%. Следует отметить, что ни один валок не был разрушен по литьй шейке и трещу, что и предполагалось по результатам расчетов на прочность.

Аналогичные данные получены при эксплуатации рабочих валков 500x1700 на дрессировочном стане «1700» и опорных валков 500x400 на стане «400» холодной прокатки листа.

На основании изложенного можно заключить, что изготовление рабочих валков станов холодной прокатки в литом или литкованном исполнении позволяет снизить стоимость изготовления и повысить их качество.

Список литературы

5. Белевский Л.С., Исмагилов Р.Р., Москвич В.М. Влияние складки на полосе на напряжения в валах квартовых станов холодной прокатки // Вестник МГТУ им. Г.И. Носова. 2010. №1. С. 40–45.
14. Ас 196697. Сталь для валков холодной прокатки // СА Форсман, С.П. Люксон.

Bibliography

Путешествия служебных свойств валков станов холодной прокатки

Беляевский Л.С., Исмагилов Р.Р.

УДК 621.923:658.53

Чаплыгин Б.А., Буторин Г.И.

НОВОЕ ПОКОЛЕНИЕ ОБЩЕМАШИНОСТРОИТЕЛЬНЫХ НОРМАТИВОВ РЕЖИМОВ РЕЗАНИЯ НА РАБОТЫ, ВЫПОЛНЯЕМЫЕ НА ШЛИФОВАЛЬНЫХ И ДОВОДОЧНЫХ СТАНКАХ

Предложена новая концепция разработки нормативов режимов абразивной обработки, обеспечивающих металлообрабатывающие предприятия технологическими рекомендациями во всем диапазоне возможностей оборудования, номенклатуры режущего инструмента и схем обработки. Подготовлена новая редакция Общемашпринципов технологических рекомендаций по эксплуатации шлифовальных и доводочных станков с ручным управлением и полуавтоматами.

Дана редакция Общемашпринципов технологических рекомендаций максимально охватывает применяемые на практике виды и схемы обработки абразивными инструментами.

Ключевые слова: режимы резания, общемашпринципы, шлифовальный станок, доводочный станок, нормативная карта, схема шлифования, параметрическое соответствие.

Введение. На машиностроительных предприятиях доля металлообрабатывающих станков, использующих абразивные инструменты, составляет в среднем около 25% от всего станочного парка. Зачастую эта величина значительно выше, например, на АвтоBA3е она ровна 38% [1], а на подшипниковых заводах достигает 80% [2]. Назначение режимов резания при проектировании станочных операций производится по нормативам, справочникам, как правило, по общемашпринципам (ОМН).

Последнее издание ОМН режимов резания для работ, выполняемых на шлифовальных и доводочных станках, было осуществлено Центральным бюро нормативов по труду при НИИ труда Госкомтруда СССР в 1978 году [3], то есть более 30 лет назад. За истекший период появились новые виды абразивных инструментов, новые типы станков и новые виды технологических операций с использованием абразивных инструментов. Кроме того, к настоящему времени из-за физического износа справочников этого издания практически нет.

Отсутствие на машиностроительных предприятиях основного справочного материала по нормированию станочных работ, проектированию технологических процессов, оценке трудоемкости и себестоимости обработки приводит к тому, что расчеты заменяются субъективными решениями мастеров и технологов (и целиком зависят от их квалификации).

Следствием этого является необоснованное снижение производительности на операциях абразивной обработки, увеличение их себестоимости, в том числе и за счет неправильной эксплуатации инструмента, так как в нормативах рекомендовались наиболее эффективные режимы эксплуатации каждого вида инструмента.

Учитывая экономические потери, вызванные отсутствием нормативов по режимам резания, подготовка новой редакции нормативов является актуальной задачей.

Цель работы — разработка нормативов режимов работы абразивной обработки, обеспечивающих металлообрабатывающие предприятия технологическими рекомендациями во всем диапазоне возможностей оборудования, номенклатуры режущего инструмента и схем обработки, то есть подготовка новой редакции Общемашпринципов технологических рекомендаций на работы, выполняемые на шлифовальных и доводочных станках.

Концепция и задачи нормативов режимов резания. Нормативы режимов резания помимо определения трудоемкости изготовления детали, что является основной задачей, должны решать еще две не менее важные [4]:

а) давать информацию по эффективной организации технологии обработки (способ установки, распределение приспусков, режимы резания и т.д.);
б) определять область наиболее эффективного использования режущего инструмента (например, иметь рекомендации по выбору характеристики шлифовального круга).

Современное состояние науки о процессах резания не позволяет расчетным путем определить рациональные режимы резания и параметры режущего инструмента. Поэтому ОМИ режимов резания традиционно строятся на базе опыта передовых машиностроительных и металлообрабатывающих отраслей. Естественным следствием такой методологии является ограниченность охвата вариантов технологических наладок в справочниках ОМИ. В частности, отсутствуют технологические решения, не прошедшие барьер применениямости. Для технологических решений, включенных в справочник, диагоналы учитывающих параметров оказывается ограниченными рамками номенклатуры изделий базовых отраслей, взятых за основу при разработке нормативов.

Что касается параметрической ограниченности, то, например, нормативы на круглое наружное шлифование предусматривают диапазон шлифуемых диаметров до 60 мм, в то время как станки тяжелой группы (ЗМ197, ЗМ194, ЗТ160 и др.), учтенные в таблице поправочных коэффициентов к жесткости станка, допускают обработку деталей диаметром до 450 мм [5]. Таким образом, для диаметров свыше 160 мм, которые могут обрабатываться на предусмотренных в справочнике станках, нормативы рекомендаций не даны.

Для подобных ситуаций ОМИ рекомендуют подбирать режимы экспериментально при отработке наладочной партии деталей в процессе технологической подготовки производства. Для автоматизированного оборудования, которое работает в строгом соответствии с наладкой, существуют даже нормативы на объем наладочной партии и время ее обработки [6].

В условиях серийного производства на отработку технологии и, в частности, на экспериментальный подбор режимов резания, времени практически нет. Наиболее рациональным способом решения этой проблемы является перенесение ее решения на нормативные справочники. Как правило, портфель заказов машиностроительного предприятия формируется, исходя из возможностей имеющегося станочного парка и инструментального хозяйства. Поэтому в условиях современного динамичного многообразного машиностроительного производства нормативы режимов резания, и в первую очередь Общемашиностроительные, приобретают новое назначение – обеспечить металлообрабатывающие предприятия надежными технологическими рекомендациями во всем диапазоне возможностей оборудования, номенклатуры режущего инструмента и схем обработки.

Изменяющееся назначение нормативных справочников обусловливает и новую концепцию их разработки: максимальный охват возможных схем технологических наладок, а также обязательное параметрическое соответствие существующему оборудованию и номенклатуре режущего инструмента.

Новая концепция требует существенной переработки нормативных справочников. При этом предстается целесообразным одновременно устранить и недоработки в методическом обеспечении существующих нормативов. В итоге формулируются следующие направления совершенствования ОМИ.

1. Обязательное обеспечение адекватного параметрического соответствия диапазонов учитываемых параметров (размеров обрабатываемых поверхностей, размеров рабочего пространства станков, технологических параметров режущих инструментов).

2. Максимальный охват применяемых схем обработки (технологических наладок, режущих инструментов и материалов, способов организации процесса обработки и т.д.) путем учета известных ранее и включения новых.

3. Лишь 62

Реализация сформулированной концепции

1. Обеспечение параметрического соответствия диапазонов учитываемых параметров и технологических условий обработки. В рамках данного направления решение этих задач нашло отражение в трех видах нормативных карт: «Частота вращения заготовки», «Скорость подачи» и «Мощность, потребная на резание».

Частота вращения заготовки. Зависимость частоты вращения шлифуемой заготовки от диаметра в нормативном справочнике представляет собой таблично заданную функцию \(n = f(D) \), где \(n \) – частота вращения, \(D \) – диаметр шлифуемой заготовки. Её можно экстраполировать от представленного в справочнике диапазона (3–160 мм) до обеспечиваемого станками (3–450 мм), воспользовавшись известными методами аппроксимации с применением репрессессионного анализа. Решить задачу позволяют стандартные программные средства MathCad, MS Excel.

Проведение трех вариантов такой экстраполяции – при использовании в качестве уравнения регрессии логарифмической, экспоненциальной и степенной функций – показала, что логарифмическая зависимость не подходит для экстраполяции, так как для больших диаметров частота вращения принимает отрицательные значения. По экспоненциальной зависимости с увеличением диаметров частота вращения стремится к нулю. Более корректна – степенная зависимость. Таким образом, хотя все три уравнения с достаточной точностью описывают исходную зависимость \(n = f(D) \) в диапазоне диаметров до 160 мм, на расширенном диапазоне, который превосходит исходный практически в три раза, они ведут себя по-разному. Поэтому нельзя с уверенностью сказать, что найденные по степенной зависимости значения частоты вращения заготовки достоверны. Необходимо применить геосеологический подход, который основан на выявлении физических закономерностей процесса шлифования.
В рамках проведенной работы построена математическая модель для процессов круглого шлифования, базирующаяся на учете физических закономерностей.

Шлифование – процесс теплонапряженный, и можно предположить, что зависимость \(n_3 = f(D_3) \) построена на критерии постоянства температуры в зоне резания, обеспечиваемой отсутствие прижогов на шлифуемой поверхности. Данную температуру можно рассматривать как функцию \(T = f(q, \tau) \), где \(q \) – мощность теплового источника; \(\tau \) – время контакта обрабатываемой заготовки и шлифовального круга.

Время \(\tau \) зависит от длины дуги \(L \) контакта и от скорости вращения детали \(n_3 \).

Для времени \(\tau \) контакта заготовки со шлифовальным кругом и скорости вращения детали \(v \) имеем соответственно:

\[
\tau = \frac{L}{v}, \tag{1}
\]

\[
L = \frac{2t(D - 1)}{d + D - 2t} \sqrt{\frac{d(D - 2t)}{t(D - 1)}}, \tag{2}
\]

где \(L \) – длина дуги контакта; \(d \) – диаметр обрабатываемой детали; \(D \) – диаметр шлифовального круга; \(t \) – глубина резания.

\[
v = \frac{\pi d n_3}{1000}, \tag{3}
\]

где \(n_3 \) – частота вращения детали, об/мин.

Сопоставление длины дуги \(L \) и времени контакта \(\tau \) показало, что при постоянном диаметре круга и незначительной глубине резания время контакта при изменении диаметра заготовки практически остается постоянным. Следовательно, по времени \(\tau \) (по среднему значению) можно рассчитать частоту вращения заготовки в диапазоне диаметров 160–500 мм по формуле

\[
n_3 = \frac{1000 - L}{\pi d \tau}. \tag{4}
\]

Результаты расчетов показали, что частота вращения заготовки практически не зависит от глубины шлифования, а с увеличением диаметра круга возрастает незначительно. При увеличении диаметра круга с 300 до 1400 мм, то есть в 5 раз, число оборотов заготовки увеличивается на 30%. Из рассчитанных чисел оборотов для нормативного справочника необходимо выбрать максимальные, так как с увеличением частоты вращения уменьшается время контакта заготовки и шлифовального круга, что обеспечит отсутствие прижогов на шлифуемой поверхности.

Максимальный диаметр шлифовальных кругов прямого профиля, выпускаемых промышленностью, составляет 1400 мм [7]. Для них и проведен расчет частоты вращения заготовки.

Определение скорости подачи на расширенном диапазоне диаметров. Значения частоты вращения заготовки, рассчитанные по степенной зависимости и по полученной аналитической модели (4), отличаются друг от друга несущественно. Поэтому для определения значений подачи на расширенном диапазоне диаметров применен метод аппроксимации.

Расширение диапазона карты мощности, потребной на резание. Мощность, потребная на резание, при круглом врезном шлифовании определяется по следующей формуле [8]:

\[
N = C_N \cdot V_f^r \cdot S_{ob}^{-y} \cdot d^n \cdot b , \tag{5}
\]

где \(N \) – мощность шлифования, кВт; \(C_N = 0,14 \) – пропорциональный коэффициент; \(V_f \) – скорость вращения заготовки, м/мин; \(S_{ob} \) – поперечная подача на оборот, мм/об; \(d \) – диаметр заготовки, мм; \(b \) – высота круга, мм; \(r = 0,8, y = 0,8, q = 0,2 \) – показатели степени.

Анализ карты мощности, потребной на резание, для круглого врезного шлифования [8] показал, что мощность пропорциональна длине шлифования. Поэтому можно предположить, что при неизменных материалах, диаметре заготовки и минутной поперечной подаче удельная мощность шлифования будет постоянной. Расчеты показали, что удельная мощность практически постоянна для фиксированных значений диаметра заготовки, ее материала и минутной поперечной подачи (погрешность не превышает 5%). Таким образом, нормативную карту мощности шлифования можно привести к более простому виду, где длина шлифования отсутствует как входной параметр, а определяется удельная мощность.

Значения удельной мощности для диаметров свыше 160 мм можно рассчитать по формуле

\[
N_{UD} = C_N \cdot V_f^r \cdot S_{ob}^{-y} \cdot d^n \cdot b , \tag{6}
\]

где \(N_{UD} \) – удельная мощность шлифования, кВт/мм.

Так как в нормативах входными параметрами являются не скорость вращения заготовки и подача на оборот, а частота вращения и минутная подача, то формуле (6) целесообразно преобразовать следующим образом:

\[
N_{UD} = 0,14 \cdot \left(\frac{\pi \cdot d \cdot n}{1000} \right)^0.8 \cdot \left(\frac{S_{ob}^{-y}}{n} \right)^0.8 \cdot d^{0.2} \cdot b , \tag{7}
\]

где \(S_{ob} \) – минутная поперечная подача, мм/мин.

Упростив данную формулу, получим окончательное выражение

\[
N_{UD} = 0,14 \cdot \left(\frac{\pi}{1000} \right)^0.8 \cdot \left(\frac{S_{ob}^{-y}}{n} \right)^0.8 \cdot d . \tag{8}
\]

По этой формуле и произведены расчеты удельной мощности шлифования.

2. Новые виды обработки, включенные в сборник нормативов. Из всего многообразия форм деталей доля шлифуемых наружных цилиндрических поверхностей, открытых с обеих сторон, составляет не значительную часть, остальные детали (ступенчатые валы, наружные поверхности втулок и т.п.) кроме шек имеют еще и шлифуемые торцы.

Совместное шлифование цилиндров и торцов нормативами не предусмотрено. В некоторой степени этот недостаток компенсируется тем, что для кругло-го наружного шлифования с осевой и радиальной под-дачей приведены поправочные коэффициенты, учи-тывающие случаи, когда при шлифовании шейки вала одновременно обрабатываются галтели (при радиаль-ной подаче) или галтели и торцы (при осевой подаче).

На практике совместное шлифование шек и тор-цов ступенчатых валов (и других подобных деталей) по одной из многих наладок находит широкое применение.

В итоге в новый нормативный справочник включены дополнительно перечисленные ниже схемы шлифо-вания торцов и цилиндров (порознь и совместно).

Три разновидности шлифования торцов на круг-лошлифовальных станках:
• торцом круга прямого профиля с радиальной подачей;
• торцом круга прямого профиля с поднутреннием с осевой подачей;
• торцом круга прямого профиля с поднутреннием с радиальной подачей.

Три разновидности шлифования на торце-круглошлифовальных станках:
• цилиндр и торец (совместно) с угловой подачей;
• торец с радиальной подачей;
• торец с осевой подачей.

Кроме того, новая редакция нормативов дополнена еще следующими видами обработки:
• Шлифование зубьев червячными кругами.
• Плоское шлифование дисков на двухсторонних торцелшлифовальных станках кругами с внутренним подводом СОЖ.

Алмазное хонингование отверстий.
• Ленточное шлифование.

Две разновидности профильного шлифования, включающие 21 технологическую наладку:
• а) На плоскошлифовальных станках – 14 наладок:
• шлифование уступов и элементов профиля «Ласточкина хвост» одной стороной профилированного круга;
• шлифование периферий непрофилированного круга при установке детали в синусных приспособлениях;
• шлифование многогранников;
• шлифование выпуклых радиусных поверхностей торцом непрофилированного круга;
• шлифование выпуклых радиусных поверхностей периферий непрофилированного круга;
• шлифование криволинейных поверхностей по копиру периферий непрофилированного круга;
• шлифование выпуклых криволинейных поверхностей по копиру торцом непрофилированного круга;
• шлифование криволинейных поверхностей по копиру периферий профилированного круга;
• шлифование криволинейных поверхностей по копиру торцом профилированного круга;

• шлифование сложных профилей периферий профилированного круга;
• шлифование выпуклых и вогнутых радиусных поверхностей периферий профилированного круга;
• шлифование угловых каналов профилирован-ным кругом;
• шлифование пазов с радиусами периферий профилированного круга;
• шлифование фасок профилированным шлифо-вальным кругом.

б) На кругло- и резьбошлифовальных станках – 7 наладок:
• шлифование криволинейных поверхностей по копиру периферий непрофилированного круга;
• шлифование криволинейных поверхностей по копиру периферий профилированного круга;
• шлифование выпуклых и вогнутых радиусных поверхностей периферий профилированного круга;
• шлифование угловых каналов периферий про-филированного круга;
• шлифование сложных профильных деталей пе-риферий профилированного круга;
• шлифование прямоугольных каналов профилированным кругом;
• шлифование прямых и наклонных торцовых по-верхностей торцом профилированного круга.

Поскольку составные конструкции, в частности покрытия, находит все большее применение, в ОМН включен раздел по шлифованию деталей с покрытием:
• круглое наружное с осевой подачей;
• плоское периферий круга на станках с прямоугольным столом.

В данном разделе представлено нормирование операций шлифования пяти видов покрытий.
1. Гальванический хром.
2. Напыляемые.
3. Композит карбид титана на основе никеля.
4. Диффузионные.
5. Азотирование.

3. Алгоритмизация методики нормирования. Анализ нормативов режимов шлифования [3] показал, что реализованная в них нормативная методика имеет два алгоритмических разрыва: при проверке и кор-рекции режимов по прикогу, а также при проверке и коррекции режимов по мощности станка. Норматив-ная методика предусматривает проверку соответствия расчетной удельной мощности шлифования и пре-дельного табличного значения безприжоговой мощ-ности. При невыполнении условия рекомендуется скорректировать режимы. Но при этом не указан порядок коррекции. Предполагается, что коррекция делаеться на основании опыта технолога, то есть носит субъ-ективный характер, и поэтому вполне возможно, что скорректированная наладка вновь не обеспечит каче-ство прикогу и потребуется вторичная коррекция.
Для объективного назначения эффективных режимов шлифования, гарантирующих отсутствие прижогов, нормативная методика дополнена алгоритмом коррекции. Базу алгоритма составляют факторы управления. Управление удельной мощностью шлифования осуществляется тремя факторами: радиальной подачей, скоростью заготовки и твердостью шлифовального круга. Анализ механизма и степени влияния этих факторов на показатели процесса шлифования позволит сформировать два варианта рекомендуемого порядка коррекции факторов управления:

1) (смена круга возможна) увеличение скорости заготовки \(\Rightarrow \) снижение твердости круга \(\Rightarrow \) снижение подачи;
2) (смена круга неприемлема) увеличение скорости заготовки \(\Rightarrow \) снижение подачи.

Анализ нормативных карт показывает, что точность задания скорости заготовки составляет 1 м/мин, для подач точность задания значений – 0,01 м/мин. Эти значения можно принять за шаг изменения управляющих факторов в разрабатываемом алгоритме. Снижение твердости круга осуществляется на 1 степень.

Что касается скорости заготовки, то соседние значения, скоростей существенно отличаются друг от друга (до 50%). Это позволяет лишь довольно грубо определить предельную удельную мощность. Для более точного определения минимального значения предельной бесприжоговой мощности во избежание излишнего завышення скорости заготовки необходимо прибегнуть к интерполации. Это позволяет вычислить промежуточные значения мощности, зная граничные значения скорости заготовки. Такая задача решается, например, с помощью полинома Лагранжа.

С учетом вышеуказанного разработан формальный алгоритм трехуровневой коррекции режимов шлифования для бесприжоговой обработки при обеспечении минимальной потери производительности по сравнению с вариантом, предусмотренным ОМН [3].

4. Доработка нормативных методик с целью повышения их адекватности реальным технологическим процессам. Передовые предприятия, например АвтоВАЗ, уже давно в своих технологических процессах описывают и регламентируют циклы шлифования. Пока в картах наладки задаются простейшие циклы – двух- и трехэтапные. Поэтому в разработанном нормативном справочнике сделан первый шаг в этом направлении – предусмотрены двухступенчатые циклы. Цикл заложен типовой: 80% времени – этап съема припуска, 20% – выдерживание. Характеристика шлифовального круга и скорости круга и детали задаются в целом на операцию, а подача (радиальная) задана для первого этапа. Для второго этапа она равна нулю, и нормативы регламентируются время этого этапа. При таком подходе нормативный справочник не только позволяет пронормировать операцию шлифования, но и дает технологические рекомендации по организации цикла шлифования в зависимости от свойств обрабатываемой детали и предъявляемых требований.

Кроме рассмотренных направлений совершенствования ОМН, определяющих качество нормативов с содержательной стороны, необходимо отметить направления, определяющие качество представления нормативных материалов.

Анализ нормативных карт ОМН 1978 г. [3] показал, что для них характерна большая неравномерность по точности определения искомого параметра. В зависимости от места в таблице, где находится определяемый параметр, погрешность достигает 33% по горизонтали и 60% по вертикали. Если учесть, что невозможно прогнозировать, в какое место таблицы при его чтении мы попадем, то трудно говорить о какой-либо гарантированной точности определения режимов по таким нормативам.

Для обеспечения гарантированной равномерной точности по всему полу таблиц предлагается использовать равноточные последовательности для задания значений нормируемых параметров:

в случае положительной последовательности, является геометрической прогрессией, обладает интересным свойством – каждый ее последующий член отличается от предыдущего на q=100%.

В случае q=0.05 имеем 5%-ную по следовательность, при q=0.1, – 10%-ную, т.е. соседние члены последовательности отличаются друг от друга на 10% и, следовательно, погрешность при использовании этой последовательности в таблице не превышает 10%. Учитывая особенности десятичной системы счисления, целесообразнее q не задавать, а находить из выражения \(q = 10^{-n} \) для целых n. Для n=10 получим q=0.25, для n=20 – q=0.12, для n=40 – q=0.06. Видно, что наблюдается полная аналогия с десятичными рядами предпочтительных чисел R10, R20 и R40 со знаменателями q соответственно 1.25; 1.12 и 1.06. Таким образом, десятичные ряды предпочтительных чисел представляют собой равноточные последовательности и поэтому могут быть рекомендованы для формирования нормативных таблиц с равномерной гарантированной точностью.

Заполнять таблицу предлагается в обратном порядке: на диапазон значений нормируемого (искомого) параметра, который описывается в таблице, накладывается равноточный ряд его значений – для каждого значения искомого параметра определяется соответствующее ему значение исходного параметра, которое и заносится в шапку таблицы.

Для уменьшения количества поправочных коэффициентов в нормативных картах необходимо обес печить возможность учета большего количества факторов в таблицах, которые формируют нормативную карту. Применение равноточных рядов создает для этого предпосылки. Например, поправочные коэффициенты обеспечивают пропорциональное увеличение всех табличных значений на одну величину (в процентах). При использовании равноточных рядов этот результат может быть достигнут простым сдвигом ряда вправо или влево на нужное количество позиций.

Применение равноточных рядов позволяет ввести в новый объект для представления нормативных карт – таблицы-номерограммы. Эти таблицы позволяют практически неограниченно увеличивать число читающих переменных (реально – до 10) и сокращать в итоге цепочку таблиц поправочных коэффициентов.
Дополнительным средством уменьшения количества попарных коэффициентов, но не менее эффективным, является применение умножений. Например, твердость обрабатываемых материалов после термической обработки принимает ряд типовых значений. Поэтому целесообразно для каждой группы обрабатываемых материалов взять за базу типовое, наиболее вероятное значение твердости и нормативную таблицу рассчитать для этого значения. Тогда поправка на твердость будет необходима только в нестандартной ситуации, т.е. этот коэффициент большей частью будет невостребованным. В итоге предлагается следующая иерархия нормативных таблиц:
– первый уровень: основная нормативная карта, которая учитывает главные факторы, причем некоторые по умолчанию;
– второй уровень: основной попарный коэффициент – по наладке (погрешность заготовки, точность детали, ее вылет);
– третий уровень: дополнительный попарный коэффициент – по измененной твердости обрабатываемого материала.
Первый уровень регулировочных рекомендаций – основной. Второй уровень иногда может быть опущен, например при жестких деталях и грубых, неточных работах. Третий уровень используется лишь в случае нестандартной ситуации.

Наличие такой иерархии нормативных таблиц помимо сокращения трудоемкости способствует еще и повышению точности нормирования.

Применение такой методологии позволит создать нормативный справочник нового поколения, обеспечивающий заданную точность нормирования и сокращающий трудоемкость нормирования до 50%.

Заключение. В соответствии с предложенной новой концепцией подготовлена новая редакция Общемашинстроительных нормативов режимов резания на работы, выполняемые на шлифовальных и доводочных станках с ручным управлением и полуавтоматах.

Наиболее значимым отличием разработанной редакции нормативов от предыдущей (1978 г.) является то, что в ней максимально охвачены применяемые на практике виды и схемы обработки абразивными инструментами. В результате количество видов абразивной обработки увеличилось в 1,6 раз, а видов технологических наладок (количество карт нормирования) в 2 раза. При этом обеспечено адекватное параметрическое соответствие диапазонов учитываемых параметров (размеров обрабатываемых поверхностей, размеров рабочего пространства станков, технологических размеров режущих инструментов).

Список литературы

Bibliography
ТЕРМОДИНАМИЧЕСКАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АСИНХРОННОГО ДВИГАТЕЛЯ

Разработана 4-массовая термодинамическая математическая модель асинхронного двигателя с короткозамкнутым ротором и самовентиляцией, методика расчета коэффициентов теплопередачи между отдельными массами модели. Проведены исследования работы модели, выполненной в программе MATLAB.

Ключевые слова: асинхронный двигатель, термодинамическая модель, методика расчета.

Key words: induction motor, thermodynamic model, method for calculating.

Применяются допущения:
- мощность теплового потока от корпуса двигателя (первая тепловая масса) в окружающую среду пропорциональна разности температур в первой и второй массах для двигателя закрытого исполнения с окружающей средой при работе двигателя,
- мощность теплового потока от одной массы к другой пропорциональна разности температур в первой и второй массах

При этих условиях и допущениях разработана схема тепловых потоков, в которой выделены потоки внутренней теплопроводности (светлые стрелки) и потоки теплопотерь соответственно между массами (темные стрелки). В соответствии с схемой тепловых потоков система диффузионных уравнений теплового баланса четырехмассовой тепловой модели закрытого асинхронного двигателя может быть представлена в виде:
Рис.1. Схема тепловых потоков АД с самовентиляцией

В уравнениях (1): Θj и Cj — температура и теплоемкость i массы: Aij — коэффициент теплоотдачи от i массы к j массе; Aio — коэффициент теплоотдачи от первой массы (корпус двигателя) в окружающую среду; Θ0 — температура окружающей среды. Теплоемкость i элемента тепловой модели определяется его удельной теплоемкостью и массой C_i = c_m_i. Суммарная теплоемкость двигателя равна сумме i теплоемкостей.

Решение системы дифференциальных уравнений (1) представляется в виде системы интегральных уравнений:

\begin{align}
\Theta_1 &= \frac{1}{C_1} \left(\Delta P_{1c} + \Delta P_{2c} - \Theta_1 (A_{1o} + A_{1m} + \Theta_{1o} + \Theta_{1m}) \right) + \Theta_1 \\
\Theta_2 &= \frac{1}{C_2} \left(\Delta P_{2c} - \Theta_2 (A_{2o} + A_{2m} + \Theta_{2o} + \Theta_{2m}) \right) + \Theta_2 \\
\Theta_3 &= \frac{1}{C_3} \left(\Delta P_{3c} - \Theta_3 (A_{3o} + A_{3m} + \Theta_{3o} + \Theta_{3m}) \right) + \Theta_3 \\
\Theta_4 &= \frac{1}{C_4} \left(\Delta P_{4c} - \Theta_4 (A_{4o} + A_{4m} + \Theta_{4o} + \Theta_{4m}) \right) + \Theta_4
\end{align}

(2)

В соответствии с системой уравнений (2) разработана структурная схема математической тепловой модели АД (рис. 2), в которой входными переменными в качестве тепловых потоков внутренней теплогенерации выступают потери АД, а выходными переменными являются температуры выделенных масс. Начальные значения интегрирующих звеньев задаются равными температуре окружающей среды Θ0 (пух холодного двигателя) или другими значениями, определяемыми задачей исследования.

Система уравнений (1) включает в себя 4 уравнения теплового баланса, по которым можно рассчитать 5 коэффициентов теплоотдачи. Для установившегося номинального режима (t → ∞; d / dt → 0) на основании данных класса обмоток по температуре, опыта работы и номинальных данных достаточно задать установившимися значениями температуры каждой массы Θ_j, и определить рациональное соотношение между двумя коэффициентами теплоотдачи. В связи с этим формулы расчета коэффициентов теплоотдачи принимают вид:

\begin{align}
A_{10} &= \Delta P_{1c} / (\Theta_{1y} - \Theta_0) \\
A_{11} &= 0.1 A_{10} \\
A_{21} &= (A_{10} (\Theta_{1y} - \Theta_0) - A_{11} (\Theta_{1y} - \Theta_0) - \\
&- \Delta P_{1c} - \Delta P_{MEC}) / (\Theta_{2y} - \Theta_{1y}) \\
A_{31} &= (-\Delta P_{2c} - A_{31} (\Theta_{2y} - \Theta_{1y})) / (\Theta_{3y} - \Theta_{2y}) \\
A_{41} &= (\Delta P_{2c} - A_{32} (\Theta_{3y} - \Theta_{2y})) / (\Theta_{4y} - \Theta_{3y})\end{align}

(3)

Рис.2. Структурная схема четырехмассовой тепловой модели АД

В результате нескольких преобразований структурной схемы рис. 2 в программной среде MATLAB разработана расчетная структурная схема тепловой модели Teplo4ad (рис. 3), позволяющая выполнить расчет переходных процессов температуры выделенных масс АД при изменении всех составляющих потерь и температуры окружающей среды. Дополнительно в модели учитывается способ охлаждения двигателя и для сравнения моделируются переходные процессы в однмассовой тепловой модели. Звенья W_i описываются передаточной функцией апериодического звена первого порядка W_i = K_i / (T_i p + 1), в которой p = d / dt — оператор дифференцирования. Значения элементов рассчитываются по формулам:

\begin{align}
K_{11} &= 1 / A_{10}; T_{11} = C_2 K_{11} \\
K_1 &= (A_{10} + A_{21} + A_{41})^{-1}; T_1 = c_m K_1 \\
K_2 &= (A_{21} + A_{32})^{-1}; T_2 = c_m K_2 \\
K_3 &= (A_{23} + A_{34})^{-1}; T_3 = c_m K_3 \\
K_4 &= (A_{34} + A_{41})^{-1}; T_4 = c_m K_4 \end{align}

(4)
Под индексом \(i = 11 \) подразумевается одномассовая тепловая модель АД. В звеньях W1-Q1 и W0-Q11 для двигателя с самовентиляцией может быть задано изменение коэффициента теплопередачи \(A_{\theta} \) в функции угловой скорости вращения по уравнению

\[
A_{\theta}(\omega) = A_{10N}(\alpha_0 + (1 - \alpha_0)\text{abs}(\omega / \omega_N)),
\]

где \(\alpha_0 \) – коэффициент ухудшения охлаждения [3] \(\alpha_0 = 1 \) для двигателей с принудительной вентиляцией, \(\alpha_0 = 0,3–0,55 \) для двигателей с самовентиляцией.

В свернутой структурной схеме тепловой модели Teplo4ad, которая представлена на рис. 4, в качестве входных переменных используются составляющие потерь АД, а в качестве выходных переменных – 5-мерный массив температур перегрева.

В таблице сведены результаты расчетов параметров тепловой модели двигателя 4А160S4У3. Расчеты выполнялись в соответствии со структурной схемой рис. 3 и по формулам (2) и (3). Масса алюминиевой короткошнурной обмотки ротора принимается 50% от массы медной обмотки статора. Установившаяся температура роторной обмотки на 10°С превышает установившуюся температуру статорной обмотки.

На рис. 5 приведены переходные процессы температур элементов тепловой модели двигателя 4А160S4У3 при постоянных сопротивлениях статора и ротора для длительного номинального режима работы S1 (a), повторно-кратковременном режиме S3 при ПВ=25% и времени цикла 10 мин (b) при температуре окружающей среды 40°С.

Результаты расчета коэффициентов тепловой модели

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значения</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
</tr>
<tr>
<td>(n, \text{ Дкг/кг}^2\text{C})</td>
<td>481</td>
</tr>
<tr>
<td>(m, \text{ кг})</td>
<td>135</td>
</tr>
<tr>
<td>(C, \text{ Дж/кг}^2\text{C})</td>
<td>66041</td>
</tr>
<tr>
<td>(\Theta_i)</td>
<td>60</td>
</tr>
<tr>
<td>(\Delta P, \text{ Вт})</td>
<td>1790.70</td>
</tr>
<tr>
<td>(T_0, \text{ МИН})</td>
<td>12.9</td>
</tr>
<tr>
<td>(K_v, \text{ c}^2/\text{Cдк})</td>
<td>0.01117</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>10</td>
</tr>
</tbody>
</table>

Анализ переходных процессов температур пере-

gрева показал:

- в длительном режиме работы S1:
 - установившиеся значения температур равны расчетным, максимальное значение 160°С соответствует обмотке ротора;
 - время переходного процесса одномассовой модели не превышает 50 мин, что составляет 47T0;
 - время переходного процесса первой массы доходит до 100 мин, что значительно превышает время одномассовой модели;
 - темп нагрева статорной обмотки выше, чем у роторной из-за различных постоянных времени нагрева \(T_2 > T_1 \);
- в повторно-кратковременном режиме S3:
 - квазистационарный тепловой режим в одномас-
совой модели наступает после 50 мин, а в многомассовой после 100 мин;
- в одномассовой модели температура колеблется от 47,5 до 50°С;
- у первой массы (корпус двигателя) температура колеблется от 52,5 до 55°С и немного больше, чем у одномассовой модели;
- у обмотки ротора (третья масса) температура колеблется от 70 до 80°С;
- у обмотки статора (вторая масса) температура колеблется от 65 до 87°С, нижняя температура меньше температуры обмотки ротора из-за более интенсивного охлаждения статора, а верхняя температура выше из-за большей внутренней теплопроводности;
- у магнитопровода ротора (четвертая масса) температура перегрева изменяется, как у апериодического звена второго порядка, колебания не превышают 1°С из-за низкой внутренней теплопроводности и охлаждения через другие тепловые массы.

На основании полученных результатов можно сделать ЗАКЛЮЧЕНИЕ, что разработанная тепловая модель качественно и количественно верно отражает внутренние тепловые процессы, происходящие в двигателе, методика расчета параметров модели достаточно проста, и с её помощью можно выполнять исследования более сложных тепловых режимов работы АД.

Рис. 5. Переходные процессы в тепловой модели для длительного режима работы S1 (а) и повторно-кратковременного режима S3 (б)

Список литературы

Bibliography
АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

УДК 621.867

Омаров К.А., Столповских И.Н., Кольга А.Д., Темерганов А.Т., Омарова Т.К.

АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ СИСТЕМ КОНТРОЛЯ И ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ КОНВЕЙЕРНЫХ ЛИНИЙ

Приведена методика проектирования систем контроля и технической диагностики конвейерных линий.

Ключевые слова: Автоматизация проектирования, конвейер, диагностика, контроль, управление.

A method for the design of control systems and technical inspection conveyor lines.

Keywords: Computer-aided design, conveyor, diagnosis, monitoring, management.

Система автоматического контроля конвейерных систем, в условиях рыночной экономики и обеспечения высокой конкурентоспособности современного конвейерного транспорта, является принципиально новой структурой, использующей модульно-иерархический принцип.

Модульность и иерархичность, как составные элементы данного принципа, определяют самостоятельность отдельных модулей при выполнении частных решений, а также соподчиненность систем различной уровня автоматического контроля и технической диагностики, входящих в одну единую гибкую систему контроля и технической диагностики конвейерных линий. Критерием эффективности гибкой системы контроля и технической диагностики конвейерных систем является учет потерь времени отклонений контролируемого параметра с использованием информации о предыдущих управлениях и значениях контролируемого параметра, а также с учетом конкретных свойств технологического параметра [1–3].

Система автоматического контроля функционирует в качестве подсистемы, обеспечивающей при этом информацией о ходе процесса для принятия решений, а также позволяет оптимизировать число контрольных операций, обладая производственными и информационными функциями. При этом решаются следующие задачи: контроль погрешности наладки узлов конвейерных систем; контроль состояния узлов механизм (износа, поломки); адаптивная поднастройка; контроль выходных параметров, параметров процесса нагружения или смещения тяговых и ведомых контуров конвейерных систем и их адаптация; сбор данных о результатах контроля и диагностирования; наложение статистической информации по данным контроля; подготовка и передача информации на второй уровень системы автоматического контроля (САК).

Создание высокоэффективных систем управления конвейерными линиями непосредственно связано с решением задач по автоматизации контроля за их работой. Наиболее важным моментом при проектировании и разработке САК является выбор комплекса технических средств, обеспечивающего решение всех задач. В этом случае необходимо провести комплексный синтез структуры технических средств на основе развития САК, реализации и распределения их функций. Следует отметить, что создание полностью законченной функциональной САК должно выполняться по соответствующим направлениям: автоматизации выбора методов управления качеством; создания адаптивной системы управления по возмущениям; развития программно-математического обеспечения; создания универсальных устройств контроля состояния наиболее ответственных узлов и элементов конвейерных систем; повышения точности датчиков обратной связи. Работы по созданию САК следует проводить в следующих двух основных направлениях: организации надежной, емкой и быстроэффектующей сети связи; разработки подпрограммного и математического обеспечения ее подсистем.

Следует отметить, что в конвейерном транспорте практически не применяется теория проектирования САК, а используются теория сложных систем, методы математического и натурального моделирования, методы теории информации. Процесс проектирования содержит трудоемкие расчетно-аналитические и экспериментальные исследования, реализуется использованием функций математических моделей, их анализом, принятием решений о выборе эффективного контроля на конкретном оборудовании.

При высокой стабильности и незначительной интенсивности процесса проектирования ограничиваются линейным приближением [1–3]:

\[Y_i = p_i = a + b \cdot i. \] \hspace{1cm} (1)

Конкретные алгоритмы функционирования систем управления создаются с учетом предсказаний и прогноза результатов влияния учитываемых факторов на выходные параметры конвейерной системы. Поздний прогноз применяют в том случае, когда между корректируемым параметром и влияющими факторами имеется определенная зависимость. Многообразие факторов, влияющих на выходные параметры объектов конвейерной системы и сложные взаимосвязи между ними, приводит к тому, что попытки предварительно
рассчитывать результат действия каждой отдельной причины, базируясь на физических моделях их возникновения, дают положительный результат лишь в отдельных случаях. В данных условиях наиболее целесообразен метод определения соотношений между причинами — действующими факторами и их следствием — соответствующим отклонением. При этом возникает задача синтеза математической модели технологической системы конвейерного транспорта, которая преобразовывала бы изменения действующих факторов в изменения выходных параметров таким образом, как это делает сама система в реальных условиях:

\[Y_i = A \{ X_i \}, i = 1, 2, ..., \] (2)

где \(X_i \) — вектор входных параметров системы; \(Y_i \) — выходные значения.

Критерием оптимальности выбора модели представляется выражением

\[H = M \left\{ \left(Y_i - \bar{Y} \right)^2 \right\} \min, \] (3)

где \(Y_i \) — погрешности выходных параметров.

Оптимальный оператор математической модели имеет следующий вид:

\[Y_i = M (Y_i / X_i), \] (4)

где \(M(Y_i / X_i) \) — условное математическое ожидание \(Y_i \) относительно входа \(X_i \), являющееся уравнением регрессии.

В большинстве случаев следует ограничиваться линейной регрессией

\[Y_i = a_0 + a_1 X_{1i} + ... + a_k X_{ki}. \] (5)

Оценка коэффициентов осуществляется с использованием метода наименьших квадратов:

\[\sum_{i=1}^{l} (Y_i - \bar{Y})^2 = \sum_{i=1}^{l} (Y_i - a_0 - a_1 X_{1i} - ... - a_k X_{ki})^2 \rightarrow \min. \] (6)

Определение коэффициентов \(a_0, a_1, ..., a_k \) должно производиться системой алгебраических уравнений

\[\sum_{j=0}^{k} a_j a_{nj} = \beta_n, n = 0, 1, ..., m, \] (7)

где

\[\alpha_{nj} = \alpha_{jn} = \sum_{i=1}^{l} X_{ni} X_{ji}, n, j = 0, 1, 2, ..., m, X_0 = 1, \]

\(\beta_n = \sum_{i=1}^{l} X_{ni} Y_i \), полученные из соблюдения условия экстремума производных выражения (6) от суммы квадратов \(a_0, a_1, a_2, ..., a_k \).

Известные алгоритмы вычисления подпадающих коррекций необходимо усовершенствовать с целью сохранения эффективности при изменении условий функционирования. Следует отметить, что функциональная система является малоинерционной, подверженной различным случайным и статистическим возмущениям, приводящим к нестабильности выходных признаков.

Количественной характеристикой выходных параметров объектов конвейерных систем является дисперсия, вычисляемая по следующей зависимости:

\[D^2 = \frac{1}{l} \sum_{i=1}^{l} (Y_i - \bar{Y})^2 / (I - 1); \] (8)

\[\bar{Y} = \frac{\sum_{i=1}^{l} Y_i}{I}. \] (9)

Рядом авторов в качестве другой количественной характеристики был использован параметр производительности \(Q \) на контроль — отношение времени контроля \(t_k \) к приведенному времени \(t_{прн} \) [1–3]:

\[Q = t_k / t_{прн}. \] (10)

Внешним критерием (целевой функции) процесса контроля и управления следует рассматривать выражение следующего вида [1]:

\[H = P_1 (D / D_{ном})^2 + P_2 (t_k / t_{прн})^2 \] (11)

с наложенными ограничениями \(D < D_{ном}, t_k < t_{прн} \), где \(P_1, P_2 \) — величины приоритетов, обладающих свойствами:

\[O \leq P_1 \leq 1, i = 1, 2; \ P_1 + P_2 = 1. \]

Величины приоритетов следует задавать после серий механической обработки деталей.

Процесс функционирования САК непосредственно связан с исследованием и анализом возможных принципов и вариантов управления нестандартными объектами, базирующимися на двух принципах.

При адаптивной подналадке системе контроля и управления придают свойства автоматической корректировки коэффициента обратной связи в ходе процесса по результатам текущей оценки качества подналадки.

Как известно, в алгоритмах управления по возмущению адаптация осуществляется в результате уточнения весовых коэффициентов управления регрессии по следующей зависимости:

\[K_{sec, (i)} = K_{sec, (i-1)} + \left[Y_{insec, (i-1)} - \frac{\sum_{n=1}^{m} K_{sec, (i-1)} X_{ni}}{X_{n, i} / (\gamma_{insec, (i-1)})} \right] \times \right. \] (12)

где \(K_{sec, (i)} \) — весовая коэффициент в \(i \)-м цикле; \(Y_{insec} \) — отклонение выходных параметров; \(\gamma \) — параметр шума; \(X_{n, i} \) — значение возмущения в цикле.

При постоянстве параметров алгоритмов управления имеется возможность снизить время, отводимое на контроль. Увеличение дисперсии приводит к вводу дополнительного контура подналадки. Самообучающаяся система включает блоки анализа и поиска; внутренний цикл выбора наилучшего с точки зрения минимума целевой функции варианта контроля и управления; блок задания.

Следует также отметить, что самообучение системы возможно при смене алгоритма контроля и управ-
ления в результате минимизации выбранного функционала цепи. Самоорганизация и самонастройка также возможны в результате выбора размерности и способа измерения за счет текущей коррекции параметров.

В случае превышения доли случайной составляющей свыше 50% коэффициент корреляции управляемого выходного параметра близок к нулю, а дисперсия большинства вариантов управления будет близка к полю допуска. При этом следует изменять вариант контроля, то есть измерять не в одной, а в двух, трех точках, повышая адекватность модели и эффективность контроля и управления. В каждом цикле производится сбор информации, занесение в память и текущая идентификация весовых коэффициентов. При устойчивости весовых коэффициентов по выбранному критерию производится расчет статистических характеристик моделей управления; выбор размерностей модели; значения критерия потерь производительности для каждого варианта управления. Используя способ перебора, из вариантов контроля и управления по подсчитанной целевой функции выбирается вариант с наименьшим обобщенным критерием эффективности.

Выводы

Диапазон управления данной системы контроля и управления параметрами объектов конвейерной системы является доля случайной составляющей, а связь последующего с предыдущим определяется однозначно, то есть данная зависимость строится на статистических критериях.

Преимуществом данной системы контроля и управления параметрами объектов конвейерной системы является возможность выбора наилучшей целевой функции способа контроля и управления.

Список литературы

Bibliography

В данной статье рассматриваются объединяющие показатели оценки инвестиционной привлекательности предприятия и проекта. Для этого используются показатели оценки эффективности бизнеса предприятия в условиях инвестирования в него финансовых средств. Рассматриваются показатели, по которым оцениваются возможности сбалансированного роста объемов производства и условий самофинансирования инвестиций и привлечения долговых заемных средств. В качестве показателей эффективности инвестиционного процесса на предприятии рассматриваются показатели доходности совокупных активов и экономической добавленной стоимости.

Ключевые слова: инвестиционная привлекательность, показатели эффективности, жизненный цикл инвестиционного проекта, экономическая добавленная стоимость, средневзвешенная стоимость капитала, прибыль, рентабельность.

In this article the united ratios valuing of investment attractiveness of enterprises and investment project are considered. For that the ratios of business effective by different finances sources are using. Indexes of possibilities for balance expansion of production in condition of using different investment capital also take place in article. Profitableness of total assets and economic added value are considered as main ratios valuing of investment attractiveness of enterprises and investment project.

Key words: attractiveness for investments, ratios of economical efficiency, living cycles of investment project, economical value added, weighted average cost of capital, income, profitability.

Вопросы эффективности инвестиций всегда связаны с вопросами инвестиционной привлекательности как для инвестора, так и для собственников инвестируемого предприятия. Ответ на эти вопросы может дать оценка инвестиционной привлекательности предприятия для инвестора и инвестиционного проекта для предприятия. Причем объединяющим в формировании ответа является только инвестиционный проект, который определяет результат по схеме «два в одном». Отсюда следует вывод, что нет только привлекательного инвестиционного проекта, как и нет только инвестиционно привлекательного предприятия. И проект, и предприятие должны «найти друг друга», удовлетворив требования, предъявляемые одни к другому.

Что же это за требования? С одной стороны, требования предприятия, представленные которыми является инвестор, требования выглядят, на наш взгляд, следующим образом:

1) способность предприятия вызвать коммерческий интерес у реального инвестора;
2) наличие и доля рынка сбыта продукции на внутреннем и внешнем рынках;
3) состояние и обновление активов предприятия;
4) высокая доходность совокупных активов предприятия;
5) наличие и реализация программы развития предприятия в прошлом, настоящем и будущем;
6) динамика наращения стоимости предприятия и бизнеса (DСАK, EVA);
7) высокий профессионализм менеджеров и профессиональных рабочих предприятия (кадровый потенциал предприятия);
8) конкурентоспособность продукции;
9) финансовая устойчивость предприятия и пути ее сохранения;
10) низкий уровень совокупного риска вложения средств в данное предприятие.

Можно выделить дополнительные малосущественные требования со стороны инвестора к предприятию, однако они не могут сколько-нибудь значительно изменить ситуацию на предприятии в лучшую сторону.

С одной стороны, интересы которого представлены акционерами и собственниками, требования к инвестиционному проекту выглядят следующим образом:
1) способность проекта создать значительный скачок в области качества производимой продукции;
2) способность проекта значительно расширить долю рынка продукции и, как следствие, значительно увеличить объемы производства;
3) способность проекта создавать экономическую добавленную стоимость капитала;
4) способность проекта увеличить производительность труда и рост заработной платы;
5) увеличить рыночную стоимость предприятия.

Анализ требований, предъявляемых на уровне субъектов инвестиционного проекта, показывает, что активную роль в инвестиционной привлекательности играют активы предприятия. Именно от правильности их использования зависит финансовое состояние и инвестиционная привлекательность предприятия [1]. В этой связи количественная оценка стоимости пред-
приятия и ее активов выдвигается на первый план. При этом необходимо отметить тот факт, что активы и обязательства обусловливают величину капитала предприятия и его экономический потенциал, то есть способность обеспечить максимально возможный объем производства товаров и услуг, имеющих платежеспособный спрос на рынке, с целью получения дохода.

Кирн Уолли [1], рассматривая способность измерения доходности инвестиций (return on investment, ROI), выделил следующие два показателя – это доходность совокупных активов (ДСА) предприятия и доходность собственного капитала (ДСК). ДСА является критериальным показателем, поскольку задает один из важнейших критериев для комплексной оценки финансово-хозяйственной деятельности предприятия в отчетном периоде. Положительная динамика ДСА активов свидетельствует об успешном развитии предприятия, росте его привлекательности для инвесторов и деловых партнеров. Снижение доходности активов указывает на существование тех или иных проблем, связанных с деятельностью фирмы (проблемы могут быть связаны как с качеством управления предприятия, так и с изменениями рыночной конъюнктуры; в любом случае руководители предприятия должны принимать решения, способствующие повышению эффективности его деятельности.

Второй показатель ДСК отражает эффективность деятельности предприятия с позиции его собственников. К. Уолли рассматривает эти показатели в их совместном влиянии на состояние бизнеса. И если доходность совокупных активов показывает операционную эффективность всего предприятия, то доходность собственного капитала показывает, каким образом операционная эффективность трансформируется в благополучие собственников.

Для вычисления ДСА необходимо получить отношение показателя прибыли до выплаты процентов и налогов к показателю совокупных активов

ДСА = \(\frac{ПВПН}{СА} \times 100\% \) \hspace{1cm} (1)

где ПВПН – прибыль до выплаты процентов и налогов, руб.; СА – совокупные активы, руб.

Для вычисления ДСК необходимо получить соотношение показателей прибыли после уплаты налогов и собственного капитала

ДСК = \(\frac{ПИ}{СК} \times 100\% \) \hspace{1cm} (2)

где ПИ – прибыль после выплаты налогов, руб.; СК – собственный капитал, руб.

Расчетные значения показателей ДСА и ДСК должны сравниваться с соответствующими показателями отрасли, в предприятии которой инвестор готов вложить финансы. Чтобы принятие решения было осознанным, необходимо поднять значимость этих показателей путем представления факторов, влияющих на их величину.

На первом этапе ДСА обычно разбивают на два промежуточных показателя:

ДСА = рентабельность реализации \times \text{ оборачиваемость совокупных активов} \hspace{1cm} (3)

ДСА = \(\frac{ПВПН}{СА} \times \frac{ПВПН}{\text{Выручка от реализации}} \times \frac{\text{Выручка от реализации}}{СА} \)

Умножив правую часть выражения ДСА на 100%, получим значение показателя в процентах. Дальнейшая детализация влияния параметров, определяющих рентабельность реализации и оборачиваемость совокупных активов, может быть проведена на основе факторного анализа [3]. Количество факторов, привлекаемых к анализу, определяется поставленными задачами исследования математической модели с привлечением моделей финансового анализа. Предлагается оценить влияние ликвидности предприятия, финансовой устойчивости, структуры пассивов. Поэтому, эти показатели в купе с рентабельностью реализации и оборачиваемостью совокупных активов позволяют найти рычаги влияния на доходность совокупных активов и, следовательно, инвестиционную привлекательность предприятия. Для решения этой задачи умножим уравнение (3) на соотношения ОА \(\frac{КО}{СОК} \times \frac{IK}{IK} \) \(\frac{ОА}{КО} \times \frac{СОК}{СК} \times \frac{IK}{IK} \)

ДСА = \(\frac{ПВПН}{Br} \times \frac{Br}{ОА} \times \frac{ОА}{СОК} \times \frac{СОК}{СК} \times \frac{SK}{IK} \times \frac{IK}{CA} \) \hspace{1cm} (4)

Здесь:

ПВПН – рентабельность продаж или норма прибыли – показатель, широко используемый для анализа прибыльности предприятия и качества менеджмента предприятия;

Вр – оборачиваемость оборотных активов – важнейший показатель эффективности использования оборотных средств на всех этапах заготовления, перепродажи и сбыта продукции;

ОА – доля собственных оборотных средств в оборотных активах предприятия;

СОК отношение краткосрочных и долгосрочных обязательств (структура заемных средств);

СК – определяет степень финансовой независимости предприятия;

ИК – определяет степень финансовой зависимости предприятия.

Вестник МГТУ им. Г. И. Носова. 2012. № 1.
Итак, мы получили шести faktorную модель, которую следует проанализировать на вопрос, в какой степени факторы влияют на изменение доходности совокупных активов.

Анализ показывает, что доходность совокупных активов напрямую зависит от рентабельности продаж (PВПН), и, следовательно, от издержек производства, от оборачиваемости оборотных активов (Bр), от доли собственных оборотных средств в оборотных активах предприятия (OA/CК), от показателя маневренности собственного оборотного капитала (СОК/CК), от доли собственного капитала в инвестиционном капитале (ИК/СА) и от соотношения инвестиционного капитала и совокупных активов (ИК/СА).

Рекомендуется проводить факторный анализ методом ценных подстановок с использованием абсолютных разностей. Если будет получена положительная динамика нарастания доходности совокупных активов предприятия, то инвестор посчитает такое предприятие инвестиционно привлекательным. Рассматривая ДСА на временном лаге развития предприятия, можно рассчитать индекс изменения этого показателя, близкого к разделению значений ДСА или его изменений во времени, тогда

$$I_{ДСА} = \frac{ДСА}{ДСА(i-1)},$$

где ДСА – изменение доходности совокупных активов в текущий период времени;

ДСА(i-1) – изменение доходности совокупных активов в предшествующий период времени.

Возможны три принципиальных значения индекса:

- I_{ДСА} < 1 – имеет место понижение доходности совокупных активов и, следовательно, инвестиционной привлекательностью;

- I_{ДСА} = 1 – имеет место стабильность доходности совокупных активов и сохранение инвестиционной привлекательностью;

- I_{ДСА} > 1 – имеет место повышение доходности совокупных активов и инвестиционной привлекательностью предприятия.

Доходность собственного капитала предприятия – важнейший показатель доходов акционеров (собственников). Высокое значение этого показателя говорит об успехе предприятия, что ведет к высокому рыночному курсу его акций и относительной легкости привлечения новых инвестиций на его развитие.

Доходность собственного капитала говорит о ставке доходности инвестиций для акционеров, которую обеспечивает предприятие. В определении этого показателя задействована ДСА, средние затраты на заемный капитал и соотношение долей акционерного капитала и остальных средств (коэффициент финансового рычага или квота собственника).

ДСК = \left[\frac{ДСА + \left(\frac{ДСА – РЗК}{3К} \right) \times (1 – Н) \right] \times (1 – Н). (6)

где РЗК – средние затраты на заемный капитал, %;

3К/CК – коэффициент финансового рычага, ед.;

Н – ставка налога на прибыль, ед.

Очевидно, что рост доходности совокупных активов влечет за собой рост доходности собственного капитала, что, в свою очередь, приводит к росту дивидендов, выплачиваемых акционерам. Однако последних интересуют не только уровень выплачиваемых или начисленных дивидендов, еще более важным является рост стоимости компании с сохранением роста доходности собственного капитала.

Рост собственного капитала предприятия возможен за счет инвестирования в развитие его бизнес-линий собственной прибыли или (и) за счет внешнего инвестирования. В условиях самофинансирования темп роста СК (отношение reinvestируемой прибыли к собственному капиталу) зависит от следующих факторов:

- рентабельность продаж (Рпн) – отношение чистой прибыли к выручке;

- оборачиваемость капитала (Коб) – отношение выручки к среднегодовой сумме капитала;

- структура капитала (Кз), характеризующая финансовую активность предприятия по привлечению заемных средств (отношение среднегодовой суммы валюты баланса к среднегодовой сумме собственного капитала);

- доля отчисления чистой прибыли на развитие производства (Дот) – отношение reinvestированной прибыли к сумме чистой прибыли.

Для расчета влияния данных факторов на изменение темпов роста собственного капитала А.Д. Шереметом и Р.С. Сайфуллиним [2] предложена следующая модель:

$$T_{СК} = \frac{\text{Пр}}{\text{В КЛ СК ЧП}} \times \frac{\text{В АС}}{\text{Б}} \times \frac{\text{Коб Кз Дот}}{\text{Рпн}} = \frac{\text{Пр} \times \text{Коб} \times \text{Кз} \times \text{Дот}}{\text{Рпн}}.$$

где T_{СК} – темп прироста собственного капитала:

- Пр – reinvestированная прибыль;

- СК – собственный капитал;

- ЧП – чистая прибыль;

- В – выручка;

- АС – (aggregate capital) общая сумма капитала (валюта баланса).

Расчет влияния этих факторов выполнен одним из способов детерминированного факторного анализа, используя данные таблицы.

| Исходные данные для факторного анализа темпов роста СК |
|-----------------|---------|---------|
| Показатели | Прошедший год | Текущий год |
| 1. Темп прироста собственного капитала (T_{СК}), % | 9,0 | 10,0 |
| 2. Рентабельность продаж (Рпн), % | 15 | 15,6 |
| 3. Оборачиваемость активов (Коб) | 4 | 4,2 |
| 4. Структура капитала (Кз) | 1,85 | 1,95 |
| 5. Доля отчислений от чистой прибыли в фонд накопления (Дот) | 0,40 | 0,42 |
Расчет произведен способом цепной подстановки:

\[T^*_{\text{EKC}} = 15,6 \times 4 \times 1,85 \times 0,40 = 44,4; \]
\[T^*_{\text{EKC}} = 15,6 \times 4 \times 1,85 \times 0,40 = 46,2; \]
\[T^*_{\text{EKC}} = 15,6 \times 4,2 \times 1,85 \times 0,40 = 48,5; \]
\[T^*_{\text{EKC}} = 15,6 \times 4,2 \times 1,95 \times 0,40 = 51,1; \]
\[T^*_{\text{EKC}} = 15,6 \times 4,2 \times 1,95 \times 0,42 = 53,7. \]

Общее изменение роста собственного капитала составляет

\[\Delta T^*_{\text{EKC}} = 53,7 - 44,4 = +9,3\%. \]

в том числе за счет изменений:

- рентабельность продаж: \(46,2 - 44,4 = +1,8\% \);
- оборачиваемость активов: \(48,5 - 46,2 = +2,3\% \);
- структуры капитала: \(51,1 - 48,5 = +2,6\% \);
- доли отчислений от чистой прибыли в фонда накопления: \(53,7 - 51,1 = +2,6\% \).

Эффективная инвестиционная политика будет способствовать росту стоимости СК.

Для сохранения доходности собственного капитала в условиях роста СК необходимо сбалансировать рост. Сбалансированный рост собственного капитала за счет потоков денежной наличности от основной деятельности должен соответствовать равновесию, т.е. когда не остаётся излишков денежных средств и не образуется их дефицит. Сбалансированный рост компании подчиняется модели, предложенной К. Уолшем:

Темп роста выручки = \(\frac{\text{Нерастворенная прибыль (пп)}}{\text{Собственный капитал (ск)}} \times 100\% \).

При превышении темпом этого значения потребуется дополнительный капитал для сохранения сбалансированного роста. В условиях, когда не хватает собственного капитала для финансирования инвестиционного проекта, прибегают к внешнему заимствованию. Величина этих заимствований должна учитывать структуру возникающего финансирования, отслеживать величину финансового рычага, в целях обеспечения достаточной финансовой устойчивости предприятия. Прогноз роста объемов производства должен коррелировать с прогнозом необходимого прироста оборотных активов в части производственных запасов и дебиторской задолженности. Поэтому расчет объема инвестиций для расширения объемов производства должен включать затраты на приобретение внеоборотных и оборотных активов. Рассчитав объем инвестиций и структуру финансирования, необходимо определить цену привлекаемых средств, которая может быть рассчитана по формуле средневзвешенной цены, широко используемой в экономических расчетах:

\[\text{WACC} = \frac{\text{РЗК} \times \text{dЗК} + \text{РСК} \times \text{dСК}}{\text{dЗК}} \times 100\% \]

где РЗК – цена заемного капитала, %.;
\(\text{dЗК} \) – доля заемного капитала в структуре капитала, ед.;
\(\text{РСК} \) – цена собственного капитала, %;
\(\text{dСК} \) – доля собственного капитала в структуре капитала, ед.

Если цена заемного капитала сложностей не вызывает (это процентная ставка с учетом выплаты налого), то затраты на акционерный (собственный) капитал определить гораздо сложнее. Все дело в том, что в основе стоимости собственного капитала лежат ожидания инвестора, который рассматривает эти ожидания с позиции ожидаемого риска – чем выше ожидаемый риск, тем выше доходность на акцию. Для оценки затрат на акционерный капитал предприятия чаще всего применяют «модель оценки долгосрочных активов» (capital asset pricing model, CAPM):

\[\text{РСК} = \text{Доходность безрисковых активов} + \]
\(+ \)\((\text{Премия за рыночный риск} \times \text{Фактор бета для компании})\).

Информационная доступность данных по рынку капитала позволяет без труда выполнить расчеты показателя РСК. Показатель WACC, помноженный на инвестированный капитал (IC), состоящий из собственного и заемного капиталов (платного), определяет капитальные издержки (Capital Charge), также широко используют в экономических расчетах при оценках, например, доходности леверированного предприятия, т.е. имеющей долговые обязательства. Капитальные издержки позволяют более точно определить остаточную прибыль, которую предприятие получает после вычитания из них их чистой операционной прибыли после уплаты налогона на прибыль. Данная остаточная прибыль в последние годы получила статус экономической добавленной стоимости EVA (economic value added):

\[\text{EVA} = \frac{\text{NOPAT} - \text{WACC} \times \text{Invested Capital}}{\text{IC}} \times 100\% \]

где NOPAT – чистая операционная прибыль после налогона на прибыль;
\(\text{WACC} \) – средневзвешенные затраты на капитал;
\(\text{Invested Capital} \) – инвестированный капитал.

Уравнение (9) можно представить в виде

\[\text{EVA} = \frac{(\text{NOPAT} - \text{WACC}) \times \text{IC}}{\text{IC}} \times 100\%. \]

где ROI – рентабельность капитала, инвестированного в компанию.

Показатель EVA отражает прибавление стоимости к рыночной стоимости предприятия и демонстрирует эффективность своей деятельности для потенциальных инвесторов.

Если EVA > 0, т.е. ROI > WACC, это означает, что имеет место прирост стоимости предприятия и его собственники заработали больше, чем на альтернативных вложениях.

Если EVA = 0, т.е. ROI = WACC, это означает, что природа стоимости предприятия нет, но собственники капитала предприятия фактически получили норму возврата на свой капитал, компенсирующую совокупный риск вложения своих средств.

Если EVA < 0, т.е. ROI < WACC, это означает, что имеет место падение стоимости предприятия и собственники теряют вложенный в предприятие капитал за счет потери альтернативной доходности.
Рыночная стоимость предприятия равна сумме стоимости чистых активов предприятия и сумме EVA будущих периодов, приведенной на момент оценки, т.е.

$$PC = \text{CA} + \sum_{t=1}^{\infty} \frac{EVA_t}{(1 - R)^t},$$

где CA - чистые активы предприятия, руб.;
R - ставка приведения к текущей стоимости, ед.; p - период оценки стоимости предприятия, лет.

В формуле (11) значение чистых активов предприятия берется по балансовой стоимости, что позволяет более корректно выделить проявление влияния EVA на величину PC предприятия. Это пояснение связано с тем, что при оценке рыночной стоимости предприятия (бизнеса) методом чистых активов при затратном подходе активы и пассивы предприятия приводят к рыночной стоимости, т.е. проводят их переоценку на эффективную дату. Здесь под эффективной датой понимается дата оценки стоимости предприятия. Расчет ЧА с применением переоценки активов и пассивов тоже возможен, учитывая неизменность второго слагаемого от первого в выражении (11), но во временном аспекте можно потерять динамику изменения стоимости предприятия, что очень важно для стратегического анализа развития предприятия и оценки инвестором квалификации и эффективности менеджмента предприятия.

Анализируя выражения (8)–(11), можно сделать вывод о том, что EVA повышает прибыльность в основном за счет улучшения использования капитала, а не за счет направления основных усилий на уменьшение затрат на использование капитала. Концепция EVA часто используется западными компаниями как более совершенный инструмент измерения эффективности деятельности подразделений, нежели чистая прибыль. Такой выбор объясняется тем, что EVA оценивает не только конечный результат, но и то, какой ценой он был получен (т.е. какой объем капитала и по какой цене использовался).

Стабильность функционирования современного предприятия (действующего в рыночных условиях) предопределяется наличием квалифицированного инвестирования средств в активы предприятия, с целью совершенствования техники и технологии. Предприятия, ориентирующие свою деятельность на бесконечно большой срок (∞), выравнивают инвестиционную политику на основе стратегического планирования своего развития. На предприятии может иметь место одновременная реализация двух и более инвестиционных проектов. При этом реализуемые проекты могут находиться на разных стадиях своего развития. В жизненном цикле проекта в соответствии с РМВОК 2004 выделяются фазы: начальная, промежуточная и финальная. В отечественной практике для целей оценки проекта рекомендуется [3] использовать следующее деление на фазы (стадий): прединвестиционная (включающая стадию организации финансирования); инвестиционная, которая может быть составляющей стадией реализации проекта; стадия завершения (выхода) из проекта.

На прединвестиционной стадии заказчик (инициатор) проекта вынужден делать оценку проекта как необходимый элемент бизнес-плана, без которого ему не найти сопроводителей проекта и не приступить к его реализации. Методы расчета ставки дисконтирования при оценке NPV на прединвестиционной стадии нет и, чаще всего, на этом этапе прибегают к среднестрессовой (если проект узкоосредненной) доходности активов на предприятиях отрасли. Основные принципы оценки экономической эффективности проектов требуют учета при прогнозировании составляющих денежных потоков, социальных факторов, экологических и всех прочих системных эффектов. Поэтому расчетная величина NPV отражает комплексный интегральный подход к оценке эффективности проекта и показывает, какая новая стоимость может быть создана в результате реализации проекта без учета источников финансирования и организационно-экономического механизма его реализации. На стадии инвестирования, когда определены все финансовые провайдеры проекта, когда известна структура финансовых, проводят корректировку источников финансирования и уточняют затраты на инвестированный капитал.

На стадии реализации и завершения расчетный эффект проекта состоит в приросте стоимости бизнеса предприятия, его акционерного капитала за счет реализации проекта (проектов). Эта стадия развития наиболее весомая по достигаемому совокупному эффекту инвестиционного проекта. Мы полагаем, что заказчик проекта обратит особое внимание на этот этап жизненного цикла ИП при оценке его эффективности и приемлемости.

В начале статьи мы уже обратили внимание пользователь на то, что нет только привилегированного инвестиционного проекта, как и нет только инвестиционно-привилегированного предприятия. И проект, и предприятие должны "найти друг друга", удовлетворив требования, предъявляемые один к другому. Рассмотренные выше показатели эффективности работы предприятия, на наш взгляд, позволяют "найти друг друга" и инвестиционному проекту и предприятию – заказчику. Настоящая статья не претендует на анализ всех проблем, возникающих при оценке показателей оценки инвестиционной привлекательности предприятий и проектов. В статье сделана попытка привлечь внимание пользователей к необходимости поиска моделей и показателей, объединяющих решения этих двух задач.

Список литературы

Bibliography
УДК 658:338.32.053.3
Данилов Г.В., Рыжова И.Г., Войнова Е.С.

АНАЛИЗ СТРУКТУРЫ И ОЦЕНКА ПРОПОРЦИОНАЛЬНОСТИ ПРОИЗВОДСТВЕННЫХ МОЩНОСТЕЙ ПРЕДПРИЯТИЯ

В статье предложена графоматрическая модель для анализа величины и структуры производственных мощностей предприятия. Разработана методика анализа соответствия производственных мощностей рыночному спросу на выпускаемую продукцию. Предложенная методика может быть использована на стадии проектирования производственной системы, при принятии решений о реконструкции, а также при оценке рыночной стоимости предприятия.

Ключевые слова: Структура производственных мощностей, оценка пропорциональности производственных систем, ассортиментные сдвиги.

The article offers the graph-matrix model for value analysis and structure analysis of production capacities of the enterprise. This method is developed for analysis of correspondence of enterprise production capacities to the market demands of its output product. The offered method can be used at design-stage of industrial system, or at decision-making stage of enterprise reconstruction or estimation of its market value.

Проанализировав формулы для расчета уровня пропорциональности, предложенные различными авторами, можно сделать вывод, что некоторые из них необоснованно сложны и не имеют явных преимуществ по сравнению со следующей формулой:

$$ S_0 = \frac{1}{m} \sum_{i=1}^{m} S_i, $$ \hspace{1cm} (1)$$

где S_0 — степень загрузки (или уровень пропорциональности) производственной системы в целом; S_i — степень загрузки i-го звена; m — количество звеньев данной производственной системы.

В свою очередь, степень загрузки звена определяется отношением пропускной способности системы к пропускной способности этого звена.

В формуле (1) все звенья одинаково влияют на показатель степени загрузки системы. Вместе с тем, загрузка производственной системы, при прочих равных условиях, будет выше, если выше будет загруженной ее звеньями, характеризующимся большей долей основного капитала, вложенного в звено. С учетом сказанного формула (1) принимает вид

$$ S_0 = \sum_{i=1}^{m} S_i \times d_i, $$ \hspace{1cm} (2)$$

где d_i — доля основного капитала i-го звена в его общей сумме.

В данной статье рассматриваются модели и методы расчета пропускных способностей и мощностей производственных объектов с попередним типом производства.

При расчете пропускных способностей звеньев и степени загрузки производственной системы необходимо учитывать пропорции (расходные коэффициенты), в которых один вид продукции расходуются на производство других. Иначе говоря, необходимо учитывать технологические взаимосвязи между стадиями производственного процесса, а следовательно, и между звеньями производственной системы.

Обычно, обсуждая технологические взаимосвязи между стадиями производственного процесса, говорят...
о технологической цепи. Фактически, на крупных предприятиях всегда имеется технологическая сеть как результат комбинирования многих технологических цепей.

Для расчета пропускной способности звеньев и производственной системы в целом сеть технологических взаимосвязей целесообразно наглядно представить в виде графа, т.е. совокупности кружков, прямоугольников и связывающих их стрелок [1]. Кружки означают виды продукции. Стрелки показывают расход одних видов продукции на производство других. Прямоугольники обозначают звенья производственной системы. На схеме показано, какими звеньями обрабатываются конкретные виды продукции.

На рисунке изображена сеть технологических взаимосвязей некоторой производственной системы, включающей пять звеньев и выпускающей семь видов продукции. Примем для определенности, что это металлопродукция, измеренная в физических тоннах.

Структура производственной системы

На рисунке приняты следующие обозначения:

\[d = (d_i)_{i=1} \] — вектор распределения основного капитала по производственным звеньям в долях единицы;

\[r = (r_j)_{j=1} \] — вектор ассортиментных соотношений конечной (валовой) продукции;

\[b = (b_{ij})_{m \times n} \] — матрица прямых расходных коэффициентов продуктов на продукты;

\[q = (q_{ik})_{n \times k} \] — матрица производственной мощности звеньев по продуктам. Если продукт не обрабатывается непосредственно данным звеном, то ПМ звена по этому продукту считается бесконечно большой величиной. При ведении расчетов на ПК, например в системе Microsoft Excel, вместо бесконечных величин используются достаточно большие числовые величины.

Таблица изображенных на рисунке величины считаются известными.

Звенья производственной системы соединены в одно целое не только сложной сетью технологических взаимосвязей, но и заданными ассортиментными соотношениями конечной продукции. Ассортиментные соотношения обусловливают не менее реальные связи между звеньями, чем технологические связи. Более того, формально связи, обусловленные ассортиментными соотношениями, можно представить как технологические. А именно преобразуем изображенную на рисунке сеть технологических взаимосвязей, введя в ее состав фиктивное звено (штриховая линия). Прием, что фиктивное звено выпускает один условный вид продукции, на который расходуются все виды конечной продукции системы в пропорциях, равных заданным ассортиментным соотношениям. Фиктивное звено характеризуется бесконечно большой производственной мощностью и нулевой долей основного капитала.

Таким образом, мы заменили заданные (например, проектные или плановые) ассортиментные соотношения конечной продукции системы технологическими связями между реальными звеньями и фиктивным звеном. Преобразованная сеть эквивалентна исходной по всем производственным характеристикам, но в отличие от исходной у нее на выходе всего один вид конечной (условной) продукции, что имеет решающее значение для расчета пропускных способностей звеньев в единицах конечной продукции системы.

При ведении расчетов в электронных таблицах, например в Microsoft Excel, целесообразно использовать таблицные функции, которые реализуют матричное исчисление.

Расчет производственной мощности выполняется в следующей последовательности:

Вектор сквозных расходных коэффициентов продукции на условную ассортиментную единицу продукции \[h = (h_i)_{i=1} : \]

\[h = (E - b)^{-1} \times r. \]

(3)

Результат расчета сквозных расходных коэффициентов продукции на условную ассортиментную единицу продукции для исследуемой производственной системы (см. рисунок), представлен в табл. 1.

Таблица 1

<table>
<thead>
<tr>
<th></th>
<th>Вид выпускаемой продукции</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сквозной расходный коэффициент продукции на условную ассортиментную единицу продукции (h) | 0,216</td>
<td>0,644</td>
<td>0,180</td>
<td>0,680</td>
<td>0,300</td>
<td>0,200</td>
<td>0,200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Матрица сквозных расходных коэффициентов продуктов на продукты \(h) : \
Изложим результат расчета собственных коэффициентов для сигналов в виде откликов на звенья производственной системы Q (табл. 6):

$$Q = \frac{1}{t}.$$

(8)

Таблица 6

Вектор пропускных способностей звеньев производственной системы

<table>
<thead>
<tr>
<th>Номер звена</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>7,61</td>
<td>5,49</td>
<td>3,31</td>
<td>5,92</td>
<td>29,98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Производственная мощность системы Q_0:

$$Q_0 = \min \{ Q \}.$$

(9)

Таблица 7

Вектор средневзвешенных коэффициентов загрузки звеньев производственной системы

<table>
<thead>
<tr>
<th>Продукция</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Средневзвешенные коэффициенты загрузки</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,13</td>
<td>0,04</td>
<td>0,15</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Средневзвешенный коэффициент загрузки производственной системы в целом K_0:

$$K_0 = k \times X,$$

(11)

где X — выпуск продукции (товарная продукция).

Для определения «собственной» ассортиментной структуры продукции производственной системы (т.e. оптимальной с точки зрения загрузки системы) необходимо, как уже было сказано выше, составить оптимизационную модель с определенными ограничениями. В качестве целевого показателя предлагается определить средневзвешенный коэффициент загрузки производственной системы в целом (K_0), а в качестве ограничений — фонд рабочего времени оборудования. Таким образом, оптимизационная модель будет выглядеть следующим образом:

$$\begin{aligned}
K \times X & \rightarrow \max; \\
\{ k \times X & \leq 1 \}.
\end{aligned}$$

(12)

В результате решения данной системы был определен средневзвешенный коэффициент загрузки и «собственная» ассортиментная структура продукции для исследуемого предприятия.

Таблица 8

«Собственная» ассортиментная структура для исследуемой производственной системы

<table>
<thead>
<tr>
<th>Продукция (порядковый номер)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Объем производства</td>
<td>0,55</td>
<td>1,10</td>
<td>1,65</td>
<td>1,10</td>
<td>1,10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ФОРМИРОВАНИЕ И РЕАЛИЗАЦИЯ ИННОВАЦИОННОГО ПОТЕНЦИАЛА В НАЦИОНАЛЬНОЙ ЭКОНОМИКЕ

В статье на основе выделенных факторов инновационного потенциала и институтов, обеспечивающих практическую реализацию этих факторов, становится возможным исследование условий формирования и реализации инновационного потенциала на национальном уровне.

По мнению автора, основным условием полной реализации совокупного инновационного потенциала национальной экономики является комплексность и эффективность каждой из его составляющих, а также их взаимодействие, поскольку отставание хотя бы одной из них выступает сдерживающим фактором развития национальной экономики в целом.

Ключевые слова: инновационный потенциал, экономический рост, условия и факторы формирования инновационного потенциала.

In this paper is shown that it is possible to study the conditions of a formation and realization of innovative potential at the national level based on selected factors of innovative potential and institutions.

The main problem of a formation and realization of an innovative potential is a problem of efficient using of results of researches and implementation of fundamental and applied results in a production.

The author argues that the balance and effectiveness all components of an innovative potential and their interaction are the main conditions for the full realization of aggregate innovative potential.

Key words: An innovation potential, an economic growth, conditions and factors of innovation potential.

В настоящее время эффективное использование инновационного потенциала, являющегося основой инновационной экономики, становится одной из необходиных предпосылок достижения устойчивости и качества экономического роста.

Мировая экономика сегодня переживает особый период: формируется новая социально-хозяйственная парадигма, объединяющая в себе новые технологии и новый образ жизни. Во времена серьезных структурных сдвигов недопустимо «немного отстать», а потом компенсировать отставание догоняющей модернизацией. В этой связи на первый план выходят процессы, связанные с развитием технологического бизнеса, который способен не только обеспечить потребности инновационного сектора экономики, но и оживить отечественную экономику и открыть перед ней новые горизонты.
чение в развитии производства. В современной экономике роль инноваций значительно возрастает. Они все более становятся основополагающими факторами экономического роста. Опыт развитых стран свидетельствует о том, что коренные преобразования в области производственных сил в эпоху НТР, быстрая сменяемость ее форм, а следовательно, новых комбинаций факторов производства, широкое внедрение нововведений стали нормой современной экономической жизни. Возрастающая роль инноваций обусловлена, во-первых, самой природой рыночных отношений; во-вторых, необходимостью глубоких качественных преобразований в экономике государств с целью выхода на траекторию устойчивого роста. Эти задачи можно решить только на основе глубоких качественных преобразований во всех отраслях народного хозяйства, осуществления глубокой структурной перестройки экономики, решительного обновления форм и методов работы [1.C.59].

Понятие «инновационный потенциал» стало концептуальным отражением инновационной деятельности, оно развивалось и уточнялось в ходе методологических, теоретических и эмпирических исследований и получило свое развитие с начала 80-х годов 20 века. Вместе с тем это понятие имеет все большее распространение. Сравнительно недавно понятие «инновационный потенциал» стало вводиться в число понятий экономической науки как экономическая категория [2.C.74].

В настоящее время нет единого определения, какая экономическая сфера фиксируется в данном понятии. Анализ экономических аспектов понятия «инновационный потенциал» выявляет широкий спектр подходов к его изучению. К рассмотрению темы инновационного потенциала, с нашей точки зрения, следует подойти как к экономической категории, являющейся иерархически организованной системой понятий, находящихся в различной степени приближения к сущности потенциала.

Соответственно более верным, на наш взгляд, будет определение инновационного потенциала экономической системы как средства, обеспечивающего получение конкретного и реального социально-экономического результата в стратегическом периоде.

В этой связи на первый план выходят следующие условия:

– наличие новшеств как суммы новых видов продукции, технологий, технических и информационных средств, позволяющих осуществлять социальное, экономическое, технологическое, техническое развитие конкретной системы, начиная с национальной экономики и завершая отдельным предприятием;

– наличие материально-технических трудовых и финансовых ресурсов, необходимых для введения этих новшеств в сферу практического использования и требующихся для обеспечения использования нововведений.

На основе выделенных факторов формирования инновационного потенциала и институтов, обеспечивающих практическую реализацию этих факторов, становится возможным исследование некоторых условий формирования инновационного потенциала на национальном уровне.

Пожалуй, наиболее важное значение в условиях рыночной экономики приобретают финансовые ресурсы, которые обеспечивают условия реализации остальных составляющих инновационного потенциала и выполняют роль их количественной оценки.

Финансовое обеспечение научно-технической деятельности отражает возможности, создаваемые экономическими факторами развития и способствует росту инновационного потенциала и его отдельных составляющих. Можно утверждать о наличии зависимости между темпами экономического развития и размерами финансирования научных исследований. Рост экономики страны тем успешнее, чем больший процент ВВП она тратит на науку.

Финансирование науки и научного обслуживания в бюджете РК по сравнению с лидерами мирового мира представляется более чем скромным. Россия же замыкает десятку мировых лидеров по расходам на науку, причем на последнюю позицию попадает рост российских затрат на НИОКР с $22,1 млрд в 2010 году до $23,1 млрд в 2011 году, при этом доля этих расходов в ВВП страны остается неизменной – 1% [3].

Из представленных в табл. 1 данных следует, что в 2010 году, по сравнению с 2000 годом, валовые затраты на исследование и разработки возросли в 8,2 раза, тем не менее, в процентах к валовому внутреннему продукту снижение составило 0,03%. Доля бюджетных средств в общем объеме внутренних затрат к 2006 году по сравнению с начальным периодом возросла на 15,7%, но вслед за этим последовало сокращение на 7,6%.

Таблица 1

<table>
<thead>
<tr>
<th>Показатель</th>
<th>2000</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Объем ВВП, млрд тенге</td>
<td>2599,9</td>
<td>7590,6</td>
<td>10213,7</td>
<td>12849,6</td>
<td>16052,9</td>
<td>17007,6</td>
<td>21647,7</td>
</tr>
<tr>
<td>Объем выполненных научно-технических работ, млрд тенге</td>
<td>6,1</td>
<td>29,6</td>
<td>35,57</td>
<td>37,04</td>
<td>49,78</td>
<td>46,83</td>
<td>47,8</td>
</tr>
<tr>
<td>Валовые затраты на научные исследования и разработки, млрд тенге</td>
<td>6,0</td>
<td>29,2</td>
<td>35,59</td>
<td>37,15</td>
<td>44,6</td>
<td>49,03</td>
<td>51,04</td>
</tr>
<tr>
<td>В том числе, млрд тенге:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Доля затрат на НИОКР в ВПП, %</td>
<td>0,18</td>
<td>0,28</td>
<td>0,24</td>
<td>0,21</td>
<td>0,22</td>
<td>0,24</td>
<td>0,15</td>
</tr>
<tr>
<td>Расходы на исследования и разработки из бюджета, млрд тенге</td>
<td>1,9</td>
<td>11,0</td>
<td>14,2</td>
<td>13,7</td>
<td>15,1</td>
<td>21,54</td>
<td>21,98</td>
</tr>
<tr>
<td>Доля бюджетных средств в общем объеме внутренних затрат, %</td>
<td>41,4</td>
<td>51,2</td>
<td>57,1</td>
<td>51,0</td>
<td>43,4</td>
<td>55,1</td>
<td>54,0</td>
</tr>
<tr>
<td>Доля товаров, услуг, работ и услуг в объеме ВВП, %</td>
<td>315,89</td>
<td>1416,28</td>
<td>1610,38</td>
<td>1720,2</td>
<td>2200,1</td>
<td>2436,8</td>
<td>2918,4</td>
</tr>
<tr>
<td>Доля бюджетных средств в общем объеме внутренних товаров, услуг, работ и услуг, млрд тенге</td>
<td>1,27</td>
<td>1,58</td>
<td>1,53</td>
<td>1,19</td>
<td>0,69</td>
<td>0,51</td>
<td>0,48</td>
</tr>
</tbody>
</table>

В 2010 году также наблюдался рост валовых затрат на исследования и разработки, тем не менее, следует отметить снижение доли бюджетных средств по сравнению с предыдущим годом на 1,1% (рис. 1).

Рис. 1. Динамика внутренних затрат на исследования и разработки в РК

Неоспоримым лидером в этой области уже 40 лет подряд остаются США: их затраты на науку и НИОКР составляют в текущем году треть от мирового объема затрат – $405,3 млрд, или около 2,7% от объема американского ВВП. Вместе с тем, темпы роста расходов в Америке замедляются: в 2010 году затраты на НИОКР составили 3,2% от объема ВВП США, в 2011 году они увеличились в номинальном выражении на 2,4%. Учитывая, что инфляция в США в 2011 году ожидается на уровне 1,5%, реальные расходы увеличились на 0,86%, или на $3,4 млрд.

Доля Азии в общенациональных затратах на НИОКР продолжает расти. Эта тенденция заметилась еще пять лет назад, в первую очередь, благодаря тому, что Китай увеличил расходы на науку в среднем на 10% в год, и на исследования и разработки Китай в 2011 году потратил $153,7 млрд (1,4% ВВП) по сравнению со $141,4 млрд в прошлом году, что даст ему возможность выйти на второе место в мире, потеснить Японию.

Расходы на НИОКР в Японии выросли со $142 млрд (до $144,1 млрд (3,3% ВВП). Следует, тем не менее, отметить, что, по мнению экспертов, темпы роста расходов на НИОКР в США, Японии и Германии существенно ниже, чем в Китае, России, Южной Корее, Индии и Бразилии, поэтому страны с развивающейся экономикой имеют все шансы потеснить не только развитую Европу, но и США [4].

Разрыв с США, конечно же, представляется особенно драматическим, однако при сравнении с другими странами, более близкими Казахстану по масштабам экономики и уровню развития, ситуация выглядит по-иному.

В течение девяти лет, с 1998 по 2007 гг., общее финансирование сферы НИОКР государственным и частным секторами в развитых странах (по кругу 27 стран Организации экономического сотрудничества и развития – ОЭСР) увеличилось более чем в полтора раза и составило 764 млрд долл., что означало рост средней наукоемкости с 2,04 до 2,24% ВВП [4]. Лицом этих процессов стала Швеция, где наукоемкость ВВП в 2004 году – самая высокая в мире – 4,27% (в США она составляла 2,67%, в Японии – 3,12 %, а в ЕС в среднем – 1,9%) [5,С.178].

<table>
<thead>
<tr>
<th>Год</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Республика Казахстан</td>
<td>35360,3</td>
<td>67088,9</td>
<td>79985,9</td>
<td>83523,4</td>
<td>113460,1</td>
<td>61050,9</td>
</tr>
<tr>
<td>Государственная собственность</td>
<td>2248,8</td>
<td>4072,5</td>
<td>7069,5</td>
<td>4560,7</td>
<td>6572,9</td>
<td>4691,6</td>
</tr>
<tr>
<td>Частная собственность</td>
<td>28395,1</td>
<td>44056,5</td>
<td>68889,5</td>
<td>49472,1</td>
<td>71469,9</td>
<td>41074,3</td>
</tr>
<tr>
<td>Собственность других государств и юридических лиц и граждан</td>
<td>4716,4</td>
<td>18959,9</td>
<td>4226,9</td>
<td>30400,6</td>
<td>35417,3</td>
<td>15285,0</td>
</tr>
</tbody>
</table>

В Казахстане, как и в большинстве стран СНГ, среди источников финансирования научных исследований и разработок в 2009 году преобладали бюджетные средства. По данным Статкомитета СНГ, в Казахстане и на Украине бюджетные средства в 2010 году уже занимали меньше половины от всех источников финансирования научных исследований и разработок.

Среди других источников финансирования научных исследований и разработок в ряде стран достаточно большую долю занимают иностранные инвестиции (Украина – 16 %, Беларусь и Россия – 6 %). В Казахстане иностранными инвесторами в 2010 году профинансировано всего 1% научных исследований и разработок.

Вещественной основой инновационного потенциала являются материально-технические ресурсы, которые определяют технико-технологическую базу потенциала, оказывают существенное влияние на масштабы и темпы инновационной деятельности. Инновационный потенциал, в свою очередь, воздействует на отрасли, обеспечивающие его материально-техническими ресурсами.

Обобщенной характеристикой материально-технической составляющей инновационного потенциала выступает размер основных фондов (в стоимостном выражении) (табл. 3).

Таблица 2

Рис. 2. Структура внутренних затрат по источникам финансирования в РК

Среди других источников финансирования научных исследований и разработок в ряде стран достаточно большую долю занимают иностранные инвестиции (Украина – 16 %, Беларусь и Россия – 6 %). В Казахстане иностранными инвесторами в 2010 году профинансировано всего 1% научных исследований и разработок.

Вещественной основой инновационного потенциала являются материально-технические ресурсы, которые определяют технико-технологическую базу потенциала, оказывают существенное влияние на масштабы и темпы инновационной деятельности. Инновационный потенциал, в свою очередь, воздействует на отрасли, обеспечивающие его материально-техническими ресурсами.

Обобщенной характеристикой материально-технической составляющей инновационного потенциала выступает размер основных фондов (в стоимостном выражении) (табл. 3).
В табл. 3 приведены внутрихозяйственные затраты на исследования и разработки по видам затрат*.

<table>
<thead>
<tr>
<th>Год</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Все затраты, млн тенге</td>
<td>14399,8</td>
<td>21527,4</td>
<td>24799,9</td>
<td>26835,5</td>
<td>34761,6</td>
<td>38988,7</td>
</tr>
<tr>
<td>1. Внутрихозяйственные затраты, всего</td>
<td>13863,9</td>
<td>20036,0</td>
<td>22362,6</td>
<td>27573,7</td>
<td>33865,9</td>
<td>38538,0</td>
</tr>
<tr>
<td>затраты на оплату труда</td>
<td>6902,1</td>
<td>8841,6</td>
<td>10925,1</td>
<td>12963,4</td>
<td>15251,5</td>
<td>18453,2</td>
</tr>
<tr>
<td>отчисления в бюджет</td>
<td>867,9</td>
<td>1800,4</td>
<td>2144,2</td>
<td>2627,8</td>
<td>2799,5</td>
<td>2794,4</td>
</tr>
<tr>
<td>затраты на оборудование</td>
<td>895,7</td>
<td>2226,5</td>
<td>2520,9</td>
<td>1483,3</td>
<td>2457,1</td>
<td>884,7</td>
</tr>
<tr>
<td>прочие внутрихозяйственные</td>
<td>5197,6</td>
<td>7151,5</td>
<td>7645,8</td>
<td>8663,0</td>
<td>13177,8</td>
<td>16405,7</td>
</tr>
<tr>
<td>2. Капитальные затраты, всего</td>
<td>716,5</td>
<td>1491,4</td>
<td>1563,9</td>
<td>1098,0</td>
<td>1075,7</td>
<td>450,7</td>
</tr>
<tr>
<td>Все затраты, %</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1. Внутрихозяйственные затраты, всего</td>
<td>95,02</td>
<td>93,07</td>
<td>93,7</td>
<td>95,9</td>
<td>96,9</td>
<td>98,8</td>
</tr>
<tr>
<td>затраты на оплату труда</td>
<td>47,93</td>
<td>41,07</td>
<td>44,05</td>
<td>35,74</td>
<td>43,87</td>
<td>47,32</td>
</tr>
<tr>
<td>отчисления в бюджет</td>
<td>6,03</td>
<td>8,36</td>
<td>8,65</td>
<td>9,79</td>
<td>8,05</td>
<td>7,17</td>
</tr>
<tr>
<td>затраты на оборудование</td>
<td>6,22</td>
<td>10,51</td>
<td>10,16</td>
<td>5,53</td>
<td>7,07</td>
<td>2,27</td>
</tr>
<tr>
<td>прочие внутрихозяйственные</td>
<td>36,09</td>
<td>33,12</td>
<td>30,82</td>
<td>32,28</td>
<td>37,91</td>
<td>42,07</td>
</tr>
<tr>
<td>2. Капитальные затраты, всего</td>
<td>4,98</td>
<td>6,93</td>
<td>6,31</td>
<td>4,09</td>
<td>3,1</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Анализуя данные таблицы, мы видим, что основная масса внутренних затрат приходится на оплату труда и прочие затраты: доля этих затрат в общей структуре затрат на исследования и разработки составляла последовательно по годам от 84 до 89%. На фоне увеличения внутренних текущих затрат явственно прослеживается динамика снижения доли капитальных затрат – от 6,93 до 1,16% с 2007 по 2009 год соответственно, чего явно недостаточно для развития научно-технической базы исследований в научно-технической сфере – это самый низкий показатель за исследуемый период. Фактически же общий отрицательный прирост затрат на оборудование за период с 2005 по 2009 год составил 8,24%.

Если анализировать внутрихозяйственные затраты на исследования и разработки по видам работ по Республике Казахстан (табл. 4), то можно отметить снижение доли затрат на фундаментальные и прикладные исследования в общей структуре внутренних текущих затрат на исследования и разработки. Усредненное за период 2004–2008 гг. распределение НИОКР по видам исследований (фундаментальные, прикладные исследования и разработки) имеет вид: 14,06, 38,08 и 31,4% соответственно.

В Казахстане, по данным госрегистрации, удельный вес разработок остается ниже уровня, принятого в развитых странах, более чем в десять раз. Изменилось соотношение видов работ и в России в пользу прикладных исследований в ущерб разработкам. Последние, самые дорогостоящие, уменьшились наиболее резко – на 70% [6,с.27].

За последние годы стала очевидной отсталость материально-технической базы институтов Республики Казахстан в области аналитического, лабораторного и компьютерного обеспечения и т.д., что не позволяет отечественным ученым и инженерам работать в конкурентном, рыночном пространстве. Многие институты, специализировавшиеся на выполнении конструкторских и проектно-технологических работ, за последнее десятилетие практически прекратили свою деятельность. Экспериментальная база, учебно-исследовательское оборудование, аппараты и приборы в учебных заведениях физически и морально устарели на 20-30 лет или амортизированы на 50-100%, а в лучших, самых передовых университетах и научно-исследовательских организациях – на 8–11 лет. Пороговый уровень данного показателя – 7 лет. Если учесть, что в развитых странах технологи в наукометрических производствах сменяют друг друга через каждые 6 месяцев, реже – через 2 года, то такое отставание может стать необратимым.

В табл. 4 приведены внутрихозяйственные затраты на исследования и разработки по видам работ*, млн тенге

<table>
<thead>
<tr>
<th>Год</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внутрихозяйственные затраты, всего</td>
<td>13863,3</td>
<td>20036,0</td>
<td>23236,0</td>
<td>25737,5</td>
<td>33685,9</td>
<td>38580,4</td>
<td>40414,5</td>
</tr>
<tr>
<td>из них</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фундаментальные исследования</td>
<td>2810,1</td>
<td>3098,9</td>
<td>3744,4</td>
<td>3488,1</td>
<td>3846,5</td>
<td>4107,5</td>
<td>4490,4</td>
</tr>
<tr>
<td>прикладные исследования</td>
<td>3206,0</td>
<td>7249,0</td>
<td>9354,3</td>
<td>9692,2</td>
<td>13320,2</td>
<td>17373,5</td>
<td>18088,0</td>
</tr>
<tr>
<td>научно-технические разработки</td>
<td>7846,3</td>
<td>9697,2</td>
<td>7944,0</td>
<td>5454,8</td>
<td>6704,9</td>
<td>6009,4</td>
<td>9536,4</td>
</tr>
<tr>
<td>научно-технические услуги</td>
<td>-</td>
<td>-</td>
<td>2193,3</td>
<td>7122,4</td>
<td>9814,3</td>
<td>7599,6</td>
<td>8299,7</td>
</tr>
</tbody>
</table>

В процентах к итогу

Внутрихозяйственные затраты, всего	100	100	100	100	100	100	100
из них							
фундаментальные исследования	20,27	15,42	16,11	13,47	11,41	10,7	11,1
прикладные исследования	23,13	36,18	40,26	37,66	39,54	45,08	44,76
научно-технические разработки	56,6	48,4	34,19	21,19	19,9	15,6	23,6
научно-технические услуги	-	-	9,44	27,67	29,13	19,7	20,54

В Российской Федерации в последние годы отмечается рост расходов на технологические инновации, в основном на приобретение машин и оборудования. В 2006 г. доля расходов на технологические инновации составила 56%. В то же время доля машин и оборудования, не превышающих по возрасту двух лет, составляет всего 20%, а современных приборов со сроком эксплуатации менее 5 лет – 10–12%. (в Японии и США они списываются через 5 лет эксплуатации) [6.С.27].

Для выхода из создавшегося положения необходимы в ближайшие годы кардинальные меры по обновлению материальной базы науки. Одним из возможных путей преодоления неблагоприятной ситуации, по мнению большинства исследователей, может стать концентрация ресурсов ведущих научных центров, создание сетей центров коллективного пользования уникальным оборудованием, взаимовыгодного сотрудничества с предпринимательскими структурами, которые заинтересованы в научных разработках.

В развитых странах фундаментальным исследованиям оказывается всесторонняя поддержка, и они являются предметом постоянной заботы правительства. Страны, не имеющие таких исследований или недостаточно ведущих им должного внимания, неизбежно обречены на отставание, так как современное инновационное развитие — это процесс постоянного освоения нового научного знания, находящегося на передовых рубежах, и чтобы его получить, нужна фундаментальная наука, свободная от диктата рынка.

При всей значимости финансовой и материально-технической составляющих инновационного потенциала главное место, по нашему мнению, в нем занимают кадры специалистов и ученых, обеспечивающих инновационный процесс новыми знаниями, идеями, изобретениями, ноу-хау, новыми технологиями.

<table>
<thead>
<tr>
<th>Год</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Численность персонала, занятого исследованиями и разработками (на конец года)</td>
<td>19563</td>
<td>17774</td>
<td>16304</td>
<td>15793</td>
<td>17021</td>
</tr>
<tr>
<td>В том числе исследователи</td>
<td>12404</td>
<td>11524</td>
<td>10780</td>
<td>10095</td>
<td>10870</td>
</tr>
<tr>
<td>из них доктора наук</td>
<td>1157</td>
<td>1166</td>
<td>1191</td>
<td>1340</td>
<td>1347</td>
</tr>
<tr>
<td>кандидата наук</td>
<td>3147</td>
<td>3058</td>
<td>2861</td>
<td>2756</td>
<td>3041</td>
</tr>
</tbody>
</table>

Именно этой составляющей инновационного потенциала должно быть уделено главное внимание в стратегии его поддержки, развития и преобразования.

![Динамика численности персонала, занятого исследованиями и разработками в РК*](image)

Воспроизводство кадров высшей квалификации в Казахстане остается основной проблемой кадрового потенциала как в количественной, так и в качественной стороне. При оценке достаточности или избыточности научных кадров для нужд страны обычно учитывают степень их воспроизводства. Согласно данным Агентства по статистике РК, в республике в 2000 г. научно-технической деятельностью были заняты 948 докторов и 2797 кандидатов наук. В 2010 году их число возросло до 1018 и 2834 соответственно. Тем не менее, за 20 лет возрастная убыль докторов наук составила от 80 до 90%, кандидатов — от 60 до 70%. С учетом фактора естественной убыли (за 7 лет на 21 и 17 % для докторов и кандидатов соответственно) приток в сферу науки составил 562 доктора и 3571 кандидат наук [6.С.48].

Важным индикатором воспроизводства научно-технического потенциала является его возрастная характеристика. В изменении возрастного показателя кандидатов наук в 2005 г. наблюдается положительная динамика в возрастной группе молодежи 30 лет. Их доля увеличилась с 22,9 до 25,9%. В возрастной группе до 40 лет также произошло увеличение с 41,6 до 42,5%, до 50 лет — снижение с 25,9 до 21,9%, 60 лет и выше увеличение с 8,9 до 9,4%.

![Структура персонала, занятого разработками и исследованиями в РК](image)
В возрастных группах 41–50 лет доля защищающихся докторов почти не изменилась (39,6%), 51–60 лет произошло уменьшение с 35,9 до 32,6%. В группе свыше 60 лет наблюдается увеличение на 2,0%. В 2005 году средний возраст защитившихся кандидатов наук составил 36,0 лет, докторов – 49,2 года. В РФ средний возраст кандидата наук – 34 года, доктора – 49 лет.

В России самую многочисленную возрастную группу исследователей по-прежнему составляют работники в возрасте от 40 до 60 лет – 50% (2004 г., в США в 1999 г. их было не более 20%), старше 60 лет – 22% (в США – 6%). Доли докторов и кандидатов наук до 40 лет составляют соответственно 2 и 17% (РФ), 1 и 25% (РК) (2007 г.).

Тем не менее, проблема молодежи в науке сохраняется актуальность. Кардиальное решение проблем омоложения науки возможно не только, а может, и не столько путем реализации отдельных программ поддержки молодых, а в контексте изменения ситуации в науке целом, включая организационные, мотивационные, материальные, социальные аспекты.

Продуктивность научного труда во многом определяется также качеством информационного обеспечения исследований и разработок.

В отличие от материального производства специфика инновационной деятельности предполагает для обеспечения доступа к информации существование ассоциативной структуры, проявляющейся в деятельности формальных и неформальных объединений (институтов, обществ, советов, ассоциаций, комиссий, конгрессов, семинаров и др.) и информационных каналов (издательств, журналов, сборников, баз данных и т.д.). Информационная составляющая играет важное значение при формировании инновационного потенциала, так как получение данных из банка в 2-3 раза выгодней, чем проведение нового исследования.

Республика Казахстан по-прежнему уступает промышленно развитым странам по развитию научно-технической информации. Западнобая научно-технической информации на 2–3 года сдвигает оценку результатов научно-технических разработок на одно поколение техники назад.

Потенциал и объем научно-исследовательских, опытно-конструкторских и технологических разработок характеризует эффективность научной деятельности.

В последние годы в Казахстане проводится масштабная работа по приведению национального патентного законодательства в соответствие с современными мировыми требованиями. За прошедшие после 1997–1999 гг. время значительно возросла патентуемость работ по биотехнологии и изменялась ее ранг среди рассматриваемых отраслей с 5-го на 2-й после химии, а также энергетики, при этом примерно вдвое сократилась патентная отдача работ по химии и нефттехники, агропромышленному комплексу, который занимает последнее место в рассматриваемом ряду отраслей, хотя НИОКР аграрного профиля ведутся широким фронтом и число отчетов по ним составляет четверть в общем фонде. То есть в данном случае исследовательская (научная) и патентная активность не совпадают, хотя в литературе утверждается четкая зависимость между ними [8,С.89].

Проведенный анализ свидетельствует о том, что за последнее десятилетие наиболее критические изменения отечественного научного потенциала произошли в кадровой составляющей, несущей перспективное творческое начало науки.

Не менее важным фактором торможения выступает отсутствие эффективной системы внедрения полученных научных результатов в промышленность, создания наукоемких технологий и производств. Главной причиной этого является отсутствие прямой связи «наука – производство», механизмов и инфраструктуры передачи научных достижений в реальный сектор экономики. Сюда же относится коммерческая незавершенность большинства научных разработок, которые, как правило, не доведены до уровня рыночного товара.

Одним из возможных путей преодоления неблагоприятной ситуации, вероятно, может быть концентрация ресурсов ведущих научных центров, создание сети центров коллективного пользования уникальным оборудованием, взаимовыгодного сотрудничества с предпринимательскими структурами, которые заинтересованы в научных разработках. Очевидно, что здесь необходимо государственное вмешательство в виде издания специальных законодательных актов, стимулирующих или принуждающих компании создавать проектно-конструкторские бюро, внедряющие результаты научно-исследовательских разработок. При этом конкуренция должна быть основой рыночных отношений, складывающихся в научных отраслях.

Существует также возможность привлечения ведущих международных организаций по развитию из США, Франции, Германии, Скандинавских стран, Японии, России, Испании, Канады и Австралии для создания научно-исследовательских центров, управление которыми направным бы осуществлялось донорами. Работа таких национальных исследовательских центров должна быть нацелена на продвижение исследований в каком-либо определенном направлении, а также на создание в процессе исследований своей интеллектуальной собственности.

Необходимо дальнейшее совершенствование системы управления науки с целью концентрации финансовых средств, кадрового и научно-технического потенциала на приоритетных направлениях науки, и в первую очередь – на обеспечение нужд эффективного развития реального сектора экономики страны, особенно в тех отраслях, где Казахстан уже имеет хорошие результаты; создание условий для трансфера и коммерциализации результатов научных разработок и введения их в хозяйственный оборот. Кроме того, необходимо подчеркнуть, что темп финансовых инвестиций в НИОКР должен быть совместим с темпами развития человеческих ресурсов, которые могут эффективно использовать инвестиции.

По нашему мнению, Республика Казахстан, наряду с Российской Федерацией, имеет необъяснимые возможности для развития и использования науки и технологий, чтобы увеличить глобальную экономическую конкурентоспособность при увеличении экономического и социального благосостояния населения.
УДК 332.05: 005
Пиньковецкая Ю.С.

ЭКОНОМИКА-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОБОРОТА МАЛЫХ ПРЕДПРИЯТИЙ

В статье приведены производственные функции для малых предприятий субъектов Российской Федерации. Эти функции отражают зависимость оборота малых предприятий от двух факторов: инвестиций в основной капитал и заработной платы работников за 2007-2009 годы. Полученные функции могут использоваться в качестве инструмента анализа и планирования оборота малього предприятия.

Ключевые слова: малые предприятия, производственная функция, оборот, инвестиции, заработная плата.

The article presents the production functions for small enterprises of the regions in the Russian Federation. The functions reflect the dependence of the small enterprises turnover from two factors: investment in fixed capital and wage of employees for 2007-2009 years. The observed functions can be used as a tool for analysis and planning of small entrepreneurship.

Key words: small enterprises, production function, turnover, investment, wage.

Малое предпринимательство, как показывает опыт зарубежных стран, является одним из основных элементов экономики. В настоящее время в России 1,594 млн малых предприятий. В малых предприятиях работает около 16,16% занятого в стране населения. Объем производимой предприятиями продукции составляет 15% ВВП страны. Вместе с тем, этот сектор экономики не получил еще в нашей стране достаточного развития. Именно поэтому, актуальным представляется разработка инструментов анализа состояния малого предпринимательства и обоснования наиболее эффективных направлений его совершенствования. Одним из таких инструментов, на наш взгляд, являются производственные функции.

К настоящему времени за рубежом и в нашей стране накоплен большой опыт разработки производственных функций для различных объектов [1]. Вместе с тем, при моделировании деятельности малых предприятий в нашей стране производственные функции не использовались.

Критерии отнесения к малым предприятиям были установлены в федеральном законе «О развитии малого и среднего предпринимательства в Российской Федерации» от 24.07.07 года N209-ФЗ. Основным критерием является численность работников малого предприятия, которая не должна превышать сто человек.

В процессе исследования анализировалась зависимость объема производства малых предприятий от широкого круга возможных факторов. Для малых предприятий объем производимой продукции оценивается суммарным оборотом, который складывается из стоимости отгруженных товаров собственного производства, выполненных собственными силами работ и услуг, а также выручки от продаж приобретенных на стороне товаров [2].

В качестве факторов, оказывающих наибольшее влияние на оборот малых предприятий, как показал проведенный анализ, целесообразно рассматривать инвестиции в основной капитал и заработную плату работников. Использование такого фактора, как инвестиции, определяется рядом существенных аспектов:

- инвестиции в малом бизнесе нацелены на очень быструю отдачу. Такое положение характерно для большинства малых предприятий и является спецификой этой сферы экономики;
- в малых предприятиях отсутствуют крупные объекты капитальных вложений (дорогостоящая недвижимость, машины и механизмы, доменные печи, нефтяные сважинки, инфраструктурные объекты, крупные сооружения и комплексы), которые эксплуатируются длительные сроки. Для малых предприятий основные фонды представляют собой элементы оборудования, средство обработки информации, инструменты, автомобили и другие аналогичные элементы, которые используются очень интенсивно в течение небольшого срока, а затем, как правило, морально устаревают или сильно изнашиваются и не подлежат восстановлению;
- амортизация основных фондов происходит по ускоренному методу, когда большинство приобретенного оборудования, производственных систем и инвентаря списывается по окончанию одного года их использования;

Вестник МГТУ им. Г. И. Носова. 2012. № 1.
– оборудование и технологии приобретаются, как правило, не одновременно, а в рассрочку и по лизинговым схемам;
– малые предприятия в России получили развитие относительно недавно и их основные фонды находятся в процессе формирования;
– учет инвестиций достоверно оценивает размер вложенного капитала.

Возможность и целесообразность использования в качестве одного из факторов производственной функции инвестиций обоснована во многих публикациях по этой проблематике. В работе Б.А. Бессонова и С.В. Цукло [3] указано, что инвестиции более приемлемы для решения непосредственно основных фондов и изменения системы экономической статистики в последнее время. Исследования, связанные с построением производственных функций, учитывающие инвестиции в качестве одного из факторов производства, проведены Е.Е. Гавриленков [4].

Вторым фактором, влияющим на оборот предприятий, является заработная плата всех работников малых предприятий. Заработная плата работников представляет комплексный показатель, который учитывает сложившиеся в конкретном субъекте Российской Федерации уровень цен, степень занятости населения и другие социальные аспекты.

В качестве исходных данных могут использоваться как абсолютные значения показателей, так и относительные (индексы). Для характеристики малого бизнеса более приемлемо использование абсолютных величин, поскольку малые предприятия в нашей стране появились относительно недавно и динамика, отражаемая индексами, не всегда корректна. По этой же причине для построения производственных функций не могут использоваться динамические ряды (данные по годам). Кроме того, за последние годы изменились критерии отнесения к малым предприятиям, имели место значительные инфляционные колебания. Поэтому анализ статистических данных за 15 лет, необходимых для проведения корректных исследований, практически не возможен.

По указанным выше причинам при проведении исследований в качестве исходных данных использовались так называемые одновременные наблюдения, т.е. показатели, характеризующие оборот малых предприятий за календарный год. Отметим, что этот подход обладает рядом преимуществ по сравнению с рассмотрением динамических рядов, о чем подробно сказано, например, в работе В.С. Михкина и М.Ю. Архипова [5]. В ней указано, что использование метода одновременных наблюдений не требует учета изменения цен, затрат факторов производства, соотношений, в которых они могут замещать друг друга, параметров эффективности, вариативности административного управления и изменчивости технологических процессов.

Проведенный анализ показал, что в качестве объекта при построении производственных функций целесообразно рассматривать совокупность малых предприятий, функционирующих в каждом из субъектов (республик, краев, областей) Российской Федерации, то есть сгруппированных по территориальному признаку. Такой подход обусловлен следующими соображениями:

– ниша, занимаемая малым бизнесом во всех субъектах, достаточно однородна;
– законодательство, действующее на территории субъектов Российской Федерации, одинаковое и определяется законами Российской Федерации в части, касающейся малых предприятий. Это же относится ко всем нормативным актам федеральных и региональных министерств и ведомств;
– в субъектах Российской Федерации присутствуют малые предприятия различных отраслей, находятся их рынки сбыта. Малое предпринимательство, как правило, имеет замкнутый цикл внутри ответствующего региона;
– вопросы поддержки и развития малого предпринимательства целесообразно решать на уровне субъектов страны;
– при построении производственных функций использовались стоимостные показатели, что во многом нивелирует особенности отдельных регионов, отраслей и конкретных малых предприятий. Так, заработная плата на Дальнем Востоке и в Сибири выше, но и стоимость продукции (оборот малых предприятий) в этих регионах также более высоки.

Разработка производственных функций производилась на основе статистических данных Федеральной службы государственной статистики [6–8] по всем субъектам Российской Федерации.

В процессе исследований использовались методы логического, экономико-статистического, кластерного, системного анализа, математической статистики и эконометрики. Для решения поставленных задач и обработки информации применяны компьютерные программы «Statistica», «Microsoft Excel», «Mathcad».

На основе статистических данных за 2007, 2008 и 2009 годы были построены три производственные функции, описывающие оборот малых предприятий в субъектах страны за указанные годы.

Производственная функция, характеризующая совокупность малых предприятий в субъектах Российской Федерации за 2007 год, имеет следующий вид [9]:

\[y_{pf2007}(x_1, x_2) = 7,766 \times x_1^{0.139} \times x_2^{0.930}, \]

где \(y_{pf2007} \) – оборот малых предприятий, млрд руб.; \(x_1 \) – инвестиции в основной капитал малых предприятий, млрд руб.; \(x_2 \) – заработная плата работников малых предприятий, млрд руб.

Производственная функция за 2008 год приведена ниже:

\[y_{pf2008}(x_1, x_2) = 6,966 \times x_1^{0.136} \times x_2^{0.981}. \]

Соответственно производственная функция, характеризующая оборот малых предприятий, за 2009 год имеет следующий вид:

\[y_{pf2009}(x_1, x_2) = 6,569 \times x_1^{0.132} \times x_2^{0.961}. \]

Условные обозначения в приведенных уравнениях аналогичны уравнению (1).
Проверка полученных уравнений с использованием методов логического и статистического анализа, показала, что все производственные функции обла- дают высоким качеством и хорошо аппроксимируют исходные данные на всем диапазоне изменения значений факторов.

Итоги проверки качества производственных функций

<table>
<thead>
<tr>
<th>Номер функции</th>
<th>Коэффициент детерминации</th>
<th>Коэффициент корреляции</th>
<th>Критерий Фишера-Сnedекора</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0,925</td>
<td>0,962</td>
<td>1172,41</td>
</tr>
<tr>
<td>(2)</td>
<td>0,939</td>
<td>0,969</td>
<td>1599,95</td>
</tr>
<tr>
<td>(3)</td>
<td>0,949</td>
<td>0,974</td>
<td>718,45</td>
</tr>
<tr>
<td>(4)</td>
<td>0,892</td>
<td>0,944</td>
<td>317,08</td>
</tr>
<tr>
<td>(5)</td>
<td>0,932</td>
<td>0,966</td>
<td>530,52</td>
</tr>
</tbody>
</table>

Сравнение трех полученных производственных функций позволило сделать следующие важные для исследования закономерностей и тенденций развития малого бизнеса выводы:

− доказана возможность описания зависимости оборота от указанных выше двух факторов с использованием степенной производственной функции;
− показано, что зависимость оборота от двух рассмотренных факторов является устойчивой и не зависит от размера, географического положения, наличия ресурсов конкретного субъекта страны;
− все три функции схожи между собой, небольшие различия имеются в значениях коэффициентов уравнений, а также величинах степеней при факторах. Это показывает на наличие устойчивых тенденций и закономерностей в развитии малого предпринимательства;
− сумма степеней во всех уравнениях больше единицы, что говорит об имеющем место возрастающем эффекте масштаба. Это при одновременном возрастании двух факторов оборот увеличивается более высокими темпами;
− фактор заработной платы работников влияет на оборот малых предприятий в большей степени, чем фактор инвестиций в основной капитал.

В составе малых предприятий, как известно, выделяются микропредприятия (с численностью работников до 15 человек включительно). Учитывая это, были построены две производственные функции, характеризующие совокупности микропредприятий и малых предприятий с численностью работников свыше 15 человек.

Построение функций производилось аналогично изложенному выше. Производственные функции были построены по статистическим данным, характеризующим совокупность малых предприятий всех субъектов Российской Федерации за 2009 год.

Производственная функция, отражающая зависимость оборота микропредприятий субъектов страны от рассматриваемых факторов, имеет следующий вид:

\[Y_{рф2009\микро} (x_1, x_2) = 8,85 \times x_1^{0,14} \times x_2^{0,888} \]

где \(Y_{рф2009\микро} \) – оборот микропредприятий, млрд руб.;
\(x_1\микро \) – инвестиции в основной капитал микропредприятий, млрд руб.;
\(x_2\микро \) – заработная плата работников микропредприятий, млрд руб.

Производственная функция по малым предприятиям (без микропредприятий) с численностью работников свыше 15 до 100 человек имеет следующий вид:

\[Y_{рф2009\малы} (x_1, x_2) = 6,511 \times x_1^{0,111} \times x_2^{0,964} \]

где \(Y_{рф2009\безм} \) – оборот малых предприятий с численностью работников свыше 15 человек, млрд руб.;
\(x_{1безм} \) – инвестиции в основной капитал малых предприятий с численностью работников свыше 15 человек, млрд руб.;
\(x_{2безм} \) – заработная плата работников малых предприятий с численностью работников свыше 15 человек, млрд руб.

Как и для функций (1), (2), (3), проверка функций (4), (5) показала, что они обладают высоким качеством и хорошо аппроксимируют исходные данные.

Анализ функций (4) и (5) позволил сделать следующие выводы:

− предложенный автором методический подход к построению производственных функций может быть применен для совокупности малых предприятий различного размера;
− обе производственные функции схожи между собой. Различия между ними невелики, значения коэффициентов отличаются менее чем на 20 %, а показатели степеней менее чем на 10 %;
− сумма степеней в уравнениях больше единицы, что говорит об имеющем место возрастающем эффекте масштаба;
− фактор заработной платы работников влияет на оборот малых предприятий в большей степени, чем фактор инвестиций в основной капитал.

В таблице приведены значения критериев для всех построенных функций.

Из таблиц видно, что коэффициенты корреляции и детерминации достаточно близки к наилучшему значению, равному единице, а расчетные значения критерия Фишера-Сnedekora больше табличного, равного 3,15.

В процессе исследований была не только доказана возможность построения двухфакторных производственных функций, но и предложенный методический подход показал свою универсальность. Построены производственные функции для Российской Федерации по данным всех её субъектов за 3 года, а также в зависимости от размера малых предприятий. Все разработанные функции обладают близкой по значению коэффициентами, а также величинами степеней. Двумя основными факторами, влияющими на оборот малых предприятий в субъектах, выступают инвестиции в основной капитал и заработная плата работников.

На основе разработанных производственных функций были построены зависимости, отражающие взаимосвязь инвестиций в основной капитал и зара-
ботной платы работников (издержки, изокванты). Кроме того, были построены оптимальные траектории расширения. Оптимальные траектории отражают наилучшие пропорции инвестиций в основной капитал и заработной платы для совокупности всех малых предприятий каждого субъекта страны.

Полученные в процессе исследования результаты являются актуальными. Такая информация может служить инструментом для анализа хозяйственной деятельности малых предприятий на муниципальном, региональном и федеральном уровнях, позволяет сформулировать научно обоснованные стратегии и перспективные планы развития этого важного сектора экономики. В текущей деятельности органов управления производственные функции могут использоваться для мониторинга состояния малого предпринимательства, обоснования эффективности инвестиций, формирования мероприятий поддержки деятельности малых предприятий.

Список литературы
doc_1138841601659 (дата обращения: 18.02.2011).

УДК 314.143
Витик С.В.

КОМПЛЕКСНЫЙ ПОДХОД К ФОРМИРОВАНИЮ МНОГОУРОВНЕВОЙ СИСТЕМЫ СТИМУЛИРОВАНИЯ РЕПРОДУКТИВНОГО ТРУДА

В статье раскрывается сущность комплексного подхода к стимулированию репродуктивного труда с его реализацией в многоуровневой системе. Даётся характеристика следующим уровням стимулирования этого вида труда: государственный, региональный и уровень предприятия.

Ключевые слова: репродуктивный труд, стимулирование труда, системный подход

Article reveals the essence of a comprehensive approach to stimulating reproductive work with its realization on a multi-level system. We consider a systematic approach to the levels at which the stimulation is carried out: state, regional and enterprise level.

Key words: reproductive work, work stimulation, systems approach

В связи со сложной демографической ситуацией, сложившейся в нашей стране, уже существующим и прогнозируемым на ближайшие десятилетия недостатком трудовых ресурсов, в последние годы в России как на государственном, так и на региональных уровнях реализуются определенные меры, направленные на стимулирование рождаемости. При этом предприятие как главный потребитель человеческого капитала также должно быть задействовано в вопросах стимулирования рождаемости и репродуктивной активности работников.

По нашему мнению, к стимулированию репродуктивного труда целесообразно применять системный многоуровневый подход, который бы учитывал три уровня этого стимулирования: государственный, региональный и уровень предприятия. Применение системного подхода в данном случае обусловлено наличием множества элементов в совокупности отношений и связей между ними. В рамках системного подхода стимулирование репродуктивного труда можно рассматривать как элемент рациональной организации репродуктивного труда, включающей в себя также целеполагание, мотивацию и, как следствие, активацию или повышение показателей репродуктивного труда. Взаимосвязь этих элементов представлена на рисунке.

Использование системного подхода также позволяет проследить взаимосвязь обеспечивающих подсистем (кадровой, научно-методической, правовой и финансовой) на выделенных уровнях многоуровневой системы.
Правовая подсистема на уровне государства сегодня представлена только Министерством здравоохранения и социального развития РФ, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в сфере здравоохранения, социального развития и прав граждан на труд. Необходимо, чтобы Министерство здравоохранения и социального развития, являясь федеральным органом исполнительной власти, учитывало потребности граждан и государства в качественной реализации репродуктивного труда, для чего целесообразно создание единой специализированной профильной общефедеральной структуры, отвечающей за семейную, демографическую политику с акцентом на вопросах стимулирования репродуктивного труда.

Поддержкой на региональном уровне могут стать комитеты и ведомства, занимающиеся стимулированием и поддержкой репродуктивного труда с учетом анализа региональной специфики.

Правовая подсистема на уровне предприятия должна обеспечивать разработку и соблюдение нормативной и законодательной базы для создания возможностей качественной реализации репродуктивного труда работниками предприятия, используя коллективный договор как правовой акт, регулирующий социально-трудовые отношения.

Научно-методическая подсистема на всех уровнях призвана обеспечить разработку форм и методов проведения исследований в вопросах изучения возможностей стимулирования репродуктивного труда. Так, на государственном уровне целесообразно наличие единой специализированной структуры, систематизирующей существующие показатели рождаемости и смертности с предлагаемыми методами и инструментами по стимулированию репродуктивного труда для выработки конкретных предложений по увеличению количественных и качественных характеристик человеческого капитала.

На региональном уровне необходимо проводить исследовательские работы, учитывающие региональную специфику (национальные, вопросы вероисповедания и т.д.) для создания практических возможностей стимулирования репродуктивного труда.

На уровне предприятия научно-методическая подсистема, используя информацию по всем аспектам деятельности предприятия и обобщая опыт работы с персоналом, должна разрабатывать приемлемые направления стимулирования репродуктивного труда для своих работников [2].

Кадровая подсистема используется в стимулировании репродуктивного труда с целью воспроизводства ресурсов для труда.

На уровне государства необходим учет перспективных потребностей экономики в квалифицированных кадрах, для чего возможно создание специальных отделов по анализу показателей репродуктивной активности населения и стимулированию репродуктивного труда для обеспечения воспроизводства ресурсов для труда.

На региональном уровне отделам образования целесообразно корректировать направления подготовки в соответствии с перепроизводством одних и дефицитом других, учитывая особенности развития сферы промышленности и услуг данного региона.

Кадровая подсистема предприятия, нацеленная на обеспечение предприятия необходимыми кадрами в количественном и качественном выражении, должна стимулировать репродуктивные процессы с целью воспроизводства кадрового ресурса.
Финансовая подсистема, являясь источником финансирования планов, программ и мероприятий по управлению ресурсами на всех уровнях, одновременно должна выступать и источником реализации программ по стимулированию репродуктивного труда. Финансовая подсистема на уровне государства представлена Фондом социального страхования РФ как специализированным финансово-кредитным учреждением при Правительстве РФ, а также региональными отделениями Фонда социального страхования.

На примере финансовой подсистемы целесообразно рассмотреть взаимодействие затрат на государственном, региональном уровнях и уровне предприятий с полученными результатами репродуктивного труда. Работодатель, внедривший репродуктивные программы на предприятии и осуществлявший определенные затраты на них, получает в качестве результата репродуктивного труда сокращение дней нетрудоспособности, связанных с заболеванием и, как следствие, сокращение оплаты трудоемкости труда и объема недополученной выручки. Вместе с этим, сокращение дней нетрудоспособности, связанной с заболеванием и, ведет к сокращению затрат фонда социального страхования на оплату больничных листов работников по уходу за больным ребенком. Платежеспособный работодатель, имеющий значительный фонд оплаты труда и перечисляющий существенную часть средств государству, является источником финансовых средств, благодаря которому возможно перераспределение денежных средств предприятиям, не осуществляющим достоинства перечисления в фонд социального страхования, но работники которого также нуждаются в средствах фонда социального страхования для оплаты листов нетрудоспособности. Таким образом, затраты предприятия на внедрение репродуктивных программ, с одной стороны (для работодателя), окупаются результатами в виде увеличения производительности труда и сокращения объема недополученной выручки, с другой стороны (для государства), проявляются результатами в виде дополнительного источника средств на нужды социального страхования работников других предприятий, осуществляемых посредством Фонда социального страхования.

Таким образом, в результате координации действий законодательных и исполнительных органов власти на федеральном и региональных уровнях с системой управления трудовыми процессами на предприятии возможно достижение системного эффекта в виде стимулирования репродуктивного труда для обеспечения потребностей экономики и общества в трудовых ресурсах.

Список литературы

Bibliography

УДК 378.016:74
Семенова О.А.
ВЛИЯНИЕ ПЕДАГОГИЧЕСКИХ ТЕХНОЛОГИЙ НА РАЗВИТИЕ ПРОФЕССИОНАЛЬНОЙ НАПРАВЛЕННОСТИ СТУДЕНТОВ В ГРАФИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

Статья посвящена проблеме формирования и развития профессиональной направленности студентов в графической деятельности при изучении дисциплины «Инженерная графика». Автор рассматривает вопросы обучения инженерной графики на основе педагогических технологий и межпредметной связи инженерной графики с дисциплинами технического профиля. Такой подход способствует развитию интереса у студентов к предмету, что делает обучение осмысленным, мотивированным и профессионально-направленным.

Ключевые слова: педагогические технологии, профессиональная направленность, графическая деятельность, технология обучения в сотрудничестве, технология профессионального ориентирования, технология опережающего обучения.

The article deals with the problem of the forming and development of the students’ professional trend in graphic activities while studying the subject «Engineering drawing». The author pays attention to the training of the engineering drawing on the basis of the pedagogical technologies and the connection with the technical subjects. Such approach promotes the students’ interest to the subject and does the training intelligent, reasonable and helps the students to understand their future profession better.

Key words: pedagogical technologies, professional trend, drawing activities, training technology in co-operation, technology of professional orientation, technology of overtaking training.

В современных условиях, когда знания быстро уста-ревают, действенным способом для получения высокой квалификации и поддержания ее на профессиональном уровне является освоение новых педагогических техно-логий, формирующих активную роль обучаемого.

Педагогические технологии способствуют повышению эффективности обучения, воспи-тания и развития, повышению качества и со-хранению времени учебно-воспитательного процесса. «Педагогическая технология — это проект и реализация системы последователь-ного развёртывания педагогической деятель-ности, направленной на достижение целей об-разования и развития личности» [1].

В процессе графической деятельности при развитии профессиональной направленности от студента требуется не только понять, запомнить и воспроизвести полученные зна-ния, но и уметь их оперировать, применять в практической деятельности. И чем активнее протекает этот мыслительный и практический учебно-познавательный процесс, тем продуктивней результат.

Многолетний поиск в практической дея-тельности активных методов обучения привел нас к тому, что действенным способом акти-визации учебной деятельности студентов яв-ляется сочетание следующих современных педагогических технологий: технологии обучения в сотрудничестве; технологии обучения на опережающей основе и технологии профессионального ори-ентирования. Интеграция этих трех педагогических технологий на конкретных уроках по инженерной графике, в графической деятельности в процессе профессиональной подготовки студентов колледжа спос-собствует развитию профессионально-графической ориентации, формированию потребности и готовности к профессиональному самосовершенствованию (рис. 1).

![Рис. 1. Схема влияния педагогических технологий на развитие профессиональной направленности студентов графической деятельности](image-url)
ние уделяется вовлечению каждого студента в активную познавательную деятельность, формирование умений решать проблемы, развитие творческих способностей студентов, раскрытию их духовности.

Совместная деятельность преподавателя и студентов предполагает сотрудничество, под которым понимают, прежде всего, стиль отношений, исключающий какое-либо принуждение со стороны преподавателя и основывающийся на совместной деятельности педагога и студента в поиске решения учебных проблем.

Исходя из поставленной задачи обучения в сотрудничестве, мы пересмотрели традиционную планировку рабочих мест. На рис. 2 дана схема размещения рабочих мест студентов в кабинете инженерной графики на весь период обучения (четыре микрогруппы по четыре человека), что позволяет общаться в процессе совместной деятельности и видеть лица друг друга. Слушать такую планировку не мешает, и главное направление на таких уроках — общение и взаимодействие студентов друг с другом в ходе познавательной совместной и творческой деятельности.

При коллективной работе с группами преподаватель приобретает роль организатора самостоятельной познавательной, исследовательской, творческой деятельности студентов. Он помогает студентам добывать нужные знания, критически осмысливать получаемую информацию, уметь делать выводы, аргументировать их, располагая необходимыми фактами, решать возникающие проблемы.

Обучение в сотрудничестве позволяет применять на занятиях инженерной графики различные формы организации учебного процесса. Они являются формой воссоздания предметного и социального содержания будущей профессиональной деятельности; решают «мертвые» задачи по развитию личности специалиста: студенты усваивают знания, умения в контексте профессии, приобретают профессиональную и социальную компетенцию.

Общие признаки коллективной работы:
1. Наличие у всех ее участников общей совместной цели.
2. Разделение труда, функций и обязанностей.
3. Сотрудничество и товарищеская взаимопомощь.
4. Наличие организации, привлечение участников работы к контролю.

5. Общественно полезный характер деятельности всех и каждого участника в отдельности.
6. Объем работы, выполняемый коллективом в целом всегда больше объема работы, выполняемой каждым его членом в отдельности или частью коллектива.

Так, например, при выполнении графического задания «Нанесение размеров» студентам выдается единое задание (начертить контур детали и проставить размеры в соответствии с правилами ГОСТ 2.307-68). Роли студентов распределяются таким образом:
1) одному студенту проследить за компоновкой изображения на поле чертежа;
2) второму — проверить качество вычерчивания линий чертежа;
3) третьему — проверить выполнение надписей чертежным шрифтом;
4) четвертому — проверить соответствие простановки размеров требованиям ГОСТ.

Примерно такие же требования предъявляются и при выполнении задания на тему «Сопряжения» (Упр.2).

Главное идея обучения в сотрудничестве — учиться вместе, а не просто что-то выполнять вместе! Обучение в сотрудничестве не только легче и интереснее, но значительно эффективнее.

Классическая дидактика ориентирована на обучении — «от известного к неизвестному». Новая дидактика, не отрицая пути движения от известного к неизвестному, в то же время обосновывает принцип перекрестной деятельности учителя, на линии которой располагаются опережающие наблюдения и опережающие эксперименты как разновидности опережающих заданий, изложенных с элементами опережения. Перечисленные факторы в совокупности называют технологией обучения на опережающей основе, которая способствует эффективной подготовке студентов к восприятию нового материала, активизирует познавательную деятельность, повышает мотивацию учения, выполняет другие педагогические функции.

Так, например, «Чтение сборочных чертежей» обычно изучается в конце курса инженерной графики. Единовременное изучение данной темы не решает всей проблемы формирования навыков чтения чертежей. Это дает только знания о том, как читать чертеж, но не формирует навыка, поскольку последнее связано с реальной потребностью в нем (чертеж надо читать для того, чтобы решать конкретные ситуационные задачи). Чтение чертежей является опережающим фактором учебного процесса, а формирование навыка чтения связано с реальной потребностью в нем.

При выполнении задания на тему «Геометрические тела» опережающей основой данного задания является то, что форма геометрических тел задается приближенная к деталям резьбовых изделий — гайке, винту, шпоночному соединению и т. п. Студенты знакомятся с их формой, назначением, сходством вычерчивания их элементов (рис. 3 и 4). На данном этапе они приобретают первые навыки чтения чертежа, а также выполняют задания с профессиональной направленностью.

Следовательно, важно, чтобы на каждом занятии чтение чертежа было необходимым и обязательным с выполнением конкретной учебной задачи. Урок, построенный на опережающей основе, включает как изучаемый и пройденный, так и будущий материал.
Актуальность педагогической технологии на определении обозначается тем, что она предлагает путь разрешения многих названных проблем и противоречий современного образования. Построенный учебный процесс соответствующим образом побуждает студентов к постоянному движению вперед в процессе получения знаний. Такое движение стимулирует умственную деятельность студентов. Данная технология может работать в сочетании с технологией обучения в сотрудничестве, а также с технологией профессионального ориентирования.

- технология содержит механизмы ее адаптации к уровню способностей студентов к самостоятельному учению, умственному развитию и воспитанию;
- обеспечивается общая эмоциональная удовлетворенность студентов собственной учебно-познавательной деятельностью.

Технология профессионального ориентирования связана с чтением сборочных чертежей и решением ряда графических задач, когда необходимо уточнять ряд сопрягаемых размеров по справочной литературе. Так, при вычертывании вала, опорная часть которого должна соответствовать размерам подшипника №209 ГОСТ 7242-81 (рис. 5), прежде всего студентам необходимо обратиться к справочнику для уточнения размера диаметра подшипника, так как размер подшипника стандартизован, и соответственно этому размеру подкорректировать размер диаметра шейки вала.

Рис. 3. Призма шестиугольная с цилиндрическим отверстием

Рис. 4. Цилиндр с призматическим пазом

Технология профессионального ориентирования дополняет учебный процесс и способствует развитию профессиональной направленности студентов в процессе изучения инженерной графики и других технических дисциплин.

По мнению М.А. Петухова, технология профессионально-ориентированного обучения обладает существенными достоинствами, определяющими ее эффективность, а именно:
- технология обеспечивает гарантированное выполнение требований Государственного образовательного стандарта к уровню и качеству подготовки специалистов;
- в процессе обучения создаются необходимые условия для становления творчески активной, профессионально-ориентированной личности специалиста;
Размеры подшипника влияют на размеры вала и корпуса подшипника. Изменение параметров влечет за собой изменение формы и размеров сопрягаемых деталей (рис. 6, 7). Умение пользоваться справочной литературой входит постоянную привычку каждого студента, что необходимо им как будущим специалистам.

Рис. 7. Вал установлен на радиальных подшипниках

Технология профессионального ориентирования обеспечивает субъективную позицию будущего специалиста путем реализации следующих задач:
1) ориентация учебного материала на решение задач с профессиональной направленностью подготовки специалиста;
2) направленность на развитие творческой личности специалиста, способного к самостоятельной профессиональной деятельности;
3) создание условий для профессионально-личностного самоопределения студента; развитие профессионально-графической ориентации, формирование потребности и готовности к профессиональному самосовершенствованию.

Внедрение современных технологий обучения в педагогическую практику показывает, что они позволяют сделать педагогический процесс управляемым и эффективным на основе его системного построения, а их освоение преподавателями значительно повышает уровень профессиональной компетенции и педагогического мастерства.

Список литературы

Bibliografi
3. Petuhov M.A., Scientific basis of technical skills of the system of the instruction in special subjects / Edited by A.P. Belyaeva. SPb., Ulyanovsk, 2000
ИНФИЛЬТРОВАННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ МЕХАНИЧЕСКИ АКТИВИРОВАННЫХ В ЖИДКИХ СРЕДАХ ПОРОШКОВЫХ ШИХТ Fe-Ni

Представлены результаты исследований влияния содержания никеля в порошковой шихте на закономерности механической активации в жидких средах, уплотнения и деформации при инфильтрации расплавом бронзы, совмещенной со спеканием, порошковых основ Fe-Ni. Установлено наследственное влияние процессов диспергирования – агломерации на закономерности уплотнения при инфильтрации, консолидации порошковых материалов и формирования механических свойств.

Ключевые слова: порошковая шихта Fe-Ni, механическая активация в жидких средах, инфильтрация.

The effect of nickel content in powder mixture on the patterns of mechanical activation in liquid media in the high-energy mill, compaction and deformation during sintering with molten bronze infiltration powder basis Fe-Ni are presented. The hereditary effect of the processes of dispersion - agglomeration of the patterns of seals during infiltration, consolidation of powder materials and the formation of mechanical properties has been established.

Key words: powder mixture Fe-Ni, mechanical activation in liquid media, infiltration.

Введение. В ЮРГТУ (НПИ) разработаны способы получения инфильтрованных порошковых материалов (ИПМ), включающие напрессовку инфильтрата на предварительно спрессованную порошковую железную основу, с последующим спеканием биметаллической заготовки, совмещённым с инфильтрацией тугоплавкого каркаса [1]. Технологии обеспечивают получение инфильтрованных расплавами меди, бронзы и латуни порошковых материалов на основе железа с повышенными физико-механическими и эксплуатационными свойствами. В работе [2] обосновано использование в качестве инфильтрата бронзы БрО10С1.5ЦФ и определено его оптимальное содержание (10-14 % масс.), обеспечивающее получение ИПМ с повышенной прочностью при испытаниях на изгиб. Увеличение содержания бронзы более 1-1,4 % масс. приводит к выделению e-фазы, охрупчивающей ИПМ и снижению прочности. Предварительные исследования [3] влияния содержания никеля (0-8 % масс.) в шихте основы Fe-Ni на физико-механические свойства ИПМ и закономерности уплотнения при инфильтрации, совмещённой со спеканием, для различных марок железного порошка, а также результаты многократной оптимизации показали, что введение 2 % масс. никеля в шихту на основе порошка железа ПЖВ 3.160.26 обеспечивает получение ИПМ с пониженной пористостью и повышенной твердостью поверхностных слоев. Проведённые в ЮРГТУ (НПИ) исследования по механической обработке в жидких средах порошковых шихт Ni-Fe показали возможность активации процессов сплавообразования и формирования твёрдых растворов при спекании формовок [4].

Цель работы – установить закономерности механической активации порошковых шихт Fe-Ni, инфильтрации, совмещённой со спеканием, формирования структуры и свойств ИПМ (Fe-Ni) – БрО10.

Методики исследования. При выполнении работы в качестве исходных материалов при получении ИПМ использовали порошки железа ПЖВ 3.160.26 (ГОСТ 9849-86), никеля ПНК-Л5 ГОСТ 9722-97, бронза БрО10С1.5ЦФ (ТУ 14-22-105-96). Технология изготовления образцов включала механическую активацию в жидких средах (МАЖ) порошковых шихт Fe-Ni в высокоэнергетической мельнице (ВЭМ) «САНД-1» (скорость вращения ротора 4,84 е-1, время обработки в мельнице 1,2 кс, соотношение масс шаров (dш=10 мм) и шихты Mш:Mшхон=10:1). В качестве размольной среды (10 % от массы шихты) использовали 95 %-й раствор этилового спирта.

Формование цилиндрических заготовок давлением 50–400 МПа проводили на гидравлическом прессе ПГ-50, используя стальную пресс-форму. При получении ИПМ проводили засыпку шихты основы Fe-Ni в матрицу, предварительное прессование (50 МПа) с последующей засыпкой порошка инфильтрата БрО10, доуплотнение (400 МПа) биметаллической заготовки (инфильтрат-основа) и спекание, совмещённое с инфильтрацией (1432К; 7,2 кс), в среде диссоциированного аммиака и засыпке Al2O3.

Фракционный состав (ГОСТ 18318-94) механически активированных в жидких средах порошковых шихт Fe-Ni (0-2 % масс.) исследован на ситовом анализаторе модели «029» в течение 1,2 кс, используя набор лабораторных сит (45–400 мкм). Для оценки степени агломерации шихты определяли средний размер частиц после обработки в ВЭМ d0 и ручной обработки в ступе (1,2 кс) d1 и рассчитывали показатель агломерации (ПАГ).

\[
PAG = \frac{d_0}{d_1}.
\] (1)

Кривые распределения частиц по размерам описывали с помощью уравнения Розина-Раммлера [5]

\[
F(x) = a \left(b \langle x \rangle^b \right) \exp(- a \langle x \rangle^b),
\] (2)

УДК 621.762
Гончарова О.Н., Сергеенко С.Н.

ИНФИЛЬТРОВАННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ МЕХАНИЧЕСКИ АКТИВИРОВАННЫХ В ЖИДКИХ СРЕДАХ ПОРОШКОВЫХ ШИХТ Fe-Ni

Вестник МГТУ им. Г. И. Носова. 2012. № 1.
где $F(x)$ – логарифмическая нормальная функция распределения частиц по размерам;
x – размер частиц, изменяющийся в пределах $x_{\text{min}} < x < x_{\text{max}}$;
a и b – параметры распределения, определяющие остроту максимума и степень асимметричности кривой.
Значения параметров a и b рассчитывали, используя интегральную характеристику $P(x)$ – содержание частиц с размерами больше данного x.

$$P(x) = \text{exp}(-a (x/b)^b).$$

(3)

Для определения a и b кривую распределения $P(x)$ дважды логарифмировали. Уравнение (3) приравнивают к линейному виду

$$Y = a + b \ln X,$$

(4)

где $Y = \ln(\ln\frac{1}{P})$; $a = \ln a$; $b = \ln b \times \beta$; $X = \ln x$; P – проход, % мас.

Используя программу Table Curve 2D, определили значения a, b, $\ln\beta$ и вычислили параметры уравнения Розинна-Раммлера a, β.

Степень уплотнения при инфильтрации оценивали коэффициентом Ивансена K_u, равным отношению объемов пор инфильтрованной заготовки $V^\text{min}_{\text{оп}}$ и холодноломкованной формы $V^\text{ оп}$. а также определяли изменение линейных размеров при инфильтрации (ГОСТ 29012-91) с учетом d_{max} и d_{min}.

$$K_u = \frac{V^\text{min}_{\text{оп}}}{V^\text{ оп}},$$

(5)

$$Dd = \frac{d_{\text{max}}}{d_{\text{min}}} \cdot 100\%.$$

(6)

Механические свойства вершинных слоев ИПМ определяли на цилиндрических образцах при испытаниях на срез $t_{\text{ср}}$ и путем измерения твердости HRN по Роквеллу (ГОСТ 24622-81) на твердомере TP5056 УХЛ. Для оценки степени консолидации порошковых частиц определяли расчетную величину предела прочности на срез компактного материала [8]:

$$t_{\text{ср}} = \frac{t_{\text{ср}}}{1 - 1,21 \sqrt{\frac{F}{V^3}}},$$

Твердость при малых нагрузках определяли на цифровом микротвердомере HVS-1000 (0,98 Н, 10 с). Микрорентгеноспектральный анализ проводили на растровом микроскопе.

Результаты экспериментальных исследований. Результаты исследований влияния содержания никеля (0-2% мас.) в порошковой шихте Fe-Ni на фракционный состав, значения относительной плотности инфильтрованной заготовки t, измерение линейных размеров D и коэффициент Ивансена K_u при инфильтрации, совмещённой со спеканием, представлены в таблице.

<table>
<thead>
<tr>
<th>Сплав, % мас.</th>
<th>d_{min}</th>
<th>d_{max}</th>
<th>ПАГ</th>
<th>θ</th>
<th>$D_{\text{дым}}$</th>
<th>K_u</th>
<th>$t_{\text{ср}}$, МПа</th>
<th>$t_{\text{оп}}$, МПа</th>
<th>HRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>97</td>
<td>97</td>
<td>1,02</td>
<td>0,755</td>
<td>0,94</td>
<td>0,852</td>
<td>364</td>
<td>653</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
<td>93</td>
<td>1,01</td>
<td>0,750</td>
<td>1,34</td>
<td>0,886</td>
<td>374</td>
<td>714</td>
<td>101</td>
</tr>
<tr>
<td>1,5</td>
<td>98</td>
<td>96</td>
<td>1,02</td>
<td>0,749</td>
<td>1,34</td>
<td>0,8911</td>
<td>318</td>
<td>612</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>96</td>
<td>1,00</td>
<td>0,7371</td>
<td>1,60</td>
<td>0,907</td>
<td>469</td>
<td>952</td>
<td>93</td>
</tr>
</tbody>
</table>

Показано, что увеличение содержания никеля до 1% мас. приводит к снижению среднего размера частиц после обработки в ВЭМ, а при 1,5% мас. наблюдаются максимальные значения $d_{\text{оп}}$. В процессе ручной обработки в ступе происходит уменьшение средних размеров порошковых частиц во всем исследовании диапазоне содержания никеля (ПАГ=1). При повышенном содержании никеля (2% мас.) в порошковой шихте наблюдается минимальные значения ПАГ=1 за счет формирования при обработке в ВЭМ высоко прочных агломератов, не разрушающихся в процессе ручной обработки в ступе.

Влияние содержания никеля на значения параметров a_n, b_n функции распределения порошковых частиц шихты Fe-Ni после обработки в ВЭМ может быть представлено в виде полиномов третьей степени. С учетом полученных зависимостей $a_n(C_n)$, $b_n(C_n)$ построим модифицированное уравнение функции распределения частиц по размерам, учитывающее содержание никеля в шихте:

$$F(x; C_n) = a(C_n)(x/b(C_n)\exp(-a(C_n)(x/b(C_n)+1))(\exp(-a(C_n))d^{b(C_n)}/C_n),$$

где $a_n = 62,71 + 44,5\% C_n - 77,7\% C_n^2 + 28,06\% C_n^3$, $b_n = 1,85 - 0,08\% C_n - 0,26\% C_n^2 + 0,11\% C_n^3$.

Увеличение содержания никеля до 1,5% мас. приводит к повышению значений a_n и b_n, при дальнейшем повышении содержания никеля до 2% мас. наблюдается интенсивное увеличение значений a_n и b_n.

Анализ фрактограмм порошковой шихты и спрессованной формы (рис. 1) показал, что в процессе механической активации в жидких средах происходит формирование агломератов, представляющих собой композиционные частицы Fe-Ni и Ni-Fe.

Рис. 1. Изображение во вторичных электронах частиц порошковой шихты Fe-Ni (маркёр 100 мкм) (а) и распределение никеля в спрессованной порошковой шихте Fe-Ni (б) в рентгеновском излучении NiKa (в)
В результате исследований (см. таблицу) установлено, что инфильтрация расплавом бронзы, совмещенная со спеканием, обеспечивает уплотнение порошкового материала для всего исследованного диапазона значений содержания никеля (0–2% м.с.). С увеличением \(C_{Ni} \) наблюдается снижение относительной плотности инфильтрованного материала. При повышенном содержании никеля (2% м.с.) наблюдается минимальная степень уплотнения за счет наследственного влияния процессов диспергирования-агломерации при МАЖ. Уменьшение показателя агломерации приводит к росту значений коэффициента Ивенсена.

Сравнительный анализ зависимостей влияния содержания никеля на значения относительной плотности и показателя агломерации (см. таблицу) показал, что использование порошковых шихт Fe-Ni (2% м.с.) на основе высокопрочных агломератов, сформированных в ВЭМ в режиме МАЖ и не разрушающихся в процессе ручной обработки в ступе, обеспечивает минимальные значения относительной плотности материалов, снижая степень уплотнения при инфильтрации.

Увеличение содержания никеля (0–2% м.с.) приводит к «разбавлению» инфильтрационной заготовки в радиальном направлении за счет формирования твердых растворов Cu-Ni и наследственного влияния процессов диспергирования-агломерации при МАЖ. При использовании шихты Fe-Ni (2% м.с.) наблюдается максимальное увеличение радиальных размеров при инфильтрации, совмещенной со спеканием. На основе анализа результатов экспериментальных исследований построено линейное уравнение в виде

\[
Dd(C_{Ni}) = 1,102 + 0,305 \times C_{Ni}
\]

(\(D = 1,78 < F_r = 19,20 \) при \(a = 0,05 \) \(\omega = 0,05 \) и \(s^2 = 0,174 \)), адекватно описывающее влияние содержания Ni на изменение радиальных размеров верхних слоев заготовки в процессе инфильтрации. Высота заготовки уменьшается за счет массопереноса расплава инфильтрата из напрессованного поверхностного слоя в поры основы.

Увеличение содержания никеля в шихте на основе агломератов Fe-Ni приводит к интенсификации «médного роста» при инфильтрации. Увеличение радиальных размеров верхних слоев ИПМ (Fe-Ni)-BrO10 на основе агломератов можно объяснить следующим. В процессе МАЖ формируются агломераты, представляющие собой композиционные частицы Fe-Ni, а в процессе инфильтрации никель, связанный с порошковой основой, и мед, находящийся в расплаве, формируют твердый раствор Cu-Ni, расположенный на поверхности частиц железа (рис. 2, а). Увеличение радиальных размеров верхних слоев ИПМ Fe-BrO10 можно объяснить «médным ростом» агломератов Fe-Fe, сформированных в процессе МАЖ (рис. 2, б).

Совместный анализ влияния содержания никеля на значения \(d_{98}, d_{1}, \) ПАГ, \(t_{98}, t_1 \) (см. таблицу) показал, что механические свойства ИПМ на основе механически активированных в жидкодных средах шихт Fe-Ni (0-2% м.с.) определяются размерами агломератов и частич их составляющих, а также значения показателя агломерации. Максимальные значения предела прочности на срез и расчетного предела прочности на срез компактного материала, характеризующего степень консолидации ИПМ, наблюдаются при использовании шихт на основе высокопрочных агломератов, не разрушающихся в процессе ручной обработки в ступе, с минимальными размерами частиц. Снижение относительной плотности \(\theta \) приводит к снижению твердости ИПМ.

Рис. 2. Структурная модель: a – ИПМ (Fe-Ni) – BrO10; b – ИПМ Fe – BrO10

Анализ микроструктуры ИПМ (рис. 3) на основе порошковых шихт Fe-Ni (2% м.с.) показал, что в инфильтрации наблюдается локализация инфильтрата в верхних и средних слоях материала. Поверхностный слой инфильтрованного порошкового материала характеризуется повышенными значениями твердости верхнего торца HV 242 по сравнению с нижним HV 227.

Рис. 3. Микроструктура ИПМ на основе порошковых шихт Fe-2%Ni, полученных механической активацией в жидких средах: a – верх; b – низ (х640)

Анализ распределения элементов Fe, Ni, Cu, Sn (рис. 4), а также изображений во вторичных электронах и в излучении Fe, Cu, Sn, Ni (рис. 5) показал, что никель равномерно распределен по объему ИПМ, поры заполнены сплавом Cu-Sn, легированным никелем и железом.
Инфильтрованные материалы на основе механически активированных порошков Fe-Ni, обработанных в высоконергетической мельнице, на закономерности уплотнения при инфильтрации порошковой основы Fe-Ni расплавом бронзы, совмещённой со спеканием.

При использовании шихт на основе высокопористых агломератов Fe-Ni (2% мас.), сформированных в ВЭМ, наблюдаются уменьшение относительной плотности инфильтрированной порошковой заготовки, увеличение радиальных размеров при инфильтрации, совмещённой со спеканием, и снижение степени уплотнения.

Уменьшение показателя агломерации приводит к росту коэффициента Ивенсена ИПМ. При этом обеспечивается повышенная степень консолидации и прочность на срез инфильтрированного порошкового материала на основе механически активированных в жидких средах порошковых шихт Fe-Ni (2% масс.).

Список литературы

2. Гриценко С.В. Структура и свойства порошкового брака, получаемых с использованием обработанных в атмосфере порошков меди и бронзовой стружки автореф. дис. … канд. техн. наук / Юж.-Рос. гос. техн. ун-т. Новохоперск, 1996. 21 с.

Bibliography

МЕТОДЫ И СРЕДСТВА ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ

УДК 314.212:620.111.3

Гун. И.Г., Салганник В.М., Евдокимов С.А., Сарлыбаев А.А.

ОСНОВНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ДИАГНОСТИРОВАНИЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ В УСЛОВИЯХ ЭКСПЛУАТАЦИИ

Дана характеристика основных неисправностей силовых трансформаторов 35-110 кВ и причин их возникновения. Рассмотрены методы диагностирования без снятия напряжения в условиях эксплуатации. Выполнено разделение методов на пять характерных групп. Дана характеристика диагностической ценности применяемых методов.

Ключевые слова: силовой трансформатор, повреждения, диагностирование, методы, классификация, диагностическая ценность.

The characteristic of the basic derangements of mains transformers 35-110 kV and the reasons of their origination are given. Methods of diagnosing without stress relief under operating conditions are observed. Separation of methods into five characteristic groups is fulfilled. The characteristic of diagnostic importance of applied methods is given.

Key words: the mains transformer, faults, diagnosing, methods, classification, diagnostic importance.

Опыт эксплуатации силовых маслонаполненных трансформаторов показывает, что при соблюдении номинальных нагрузочных режимов, своевременном проведении ремонтов и качественном их выполнении срок службы трансформатора может значительно превышать нормативный (25 лет). При решении вопросов дальнейшей эксплуатации трансформаторов возникает необходимость оценки их действительного состояния, которое определяется целым рядом параметров, характеризующих состояние активной части, изоляции, устройства переключения ответвлений, входов высокого напряжения, системы охлаждения и т.д.

Основные причины возникновения неисправностей в силовых трансформаторах

На основе эксплуатационных данных можно выделить следующие причины, приводящие к снижению и потере работоспособности трансформаторов [1, 2]:

- повышенный нагрев элементов активной части, вызванный нагревом металлических деталей, вихревыми токами, перегрузками и перенастройкой магнитопровода, а также их старением;
- нарушение изоляции между элементами конструкции и образование контура для циркулирующих токов из-за нарушения изоляции стыковых шпилек остава, замыкания армовых балок на бак трансформатора;
- увлажнение изоляции;
- наличие газа в масле из-за газовыделения в местах повышенного нагрева или повышенной напряженности электрического поля (характерным признаком являются частичные разряды);
- старение изоляции под воздействием каталитизаторов, кислорода и электрического поля;
- частичные деформации обмоток при прохождении сквозных токов КЗ;
- повреждение обмоток (витковые замыкания) из-за грозовых перенапряжений;
- износ, нагрев контактов переключающих устройств;
- отказ защиты трансформатора;
- частичные разряды в изоляции.

Для трансформаторов класса напряжений 35–110 кВ характерными дефектами являются увлажнение изоляции и повреждение токоведущих соединений. Дефектами трансформаторов 220 кВ и выше могут стать развивающиеся повреждения из-за повышенного нагрева токоведущих соединений, элементов конструкции, увлажнение и сопутствующие им частичные разряды. Поэтому преимущественным направлением диагностирования для трансформаторов 35–120 кВ является оценивание увлажнения, старения изоляции, межвитковых замыканий и интенсивности частичных разрядов.

Условия ухудшения состояния изоляции трансформаторов условно можно разделить на три группы.

Первая группа характеризуется разложением углеводородов трансформаторного масла под действием температуры, электрического поля и каталитизаторов, а также молекул кислорода. В результате образуются молекулы воды и активные радикалы (мOLEкулярное растворение воды в материале изоляции). К этой группе относится увлажнение изоляции непосредственно путем миграции влаги из атмосферы через прокладки бака и других элементов трансформатора.

Вторая группа сопровождается образованием активных химических соединений, т.к. при наличии молекул воды и активных радикалов образуются полярные соединения (свежее трансформаторное масло является неполярным веществом). Процесс поляризации происходит вследствие гидролиза молекул материала изоляции. Интенсивность окисления увеличивается под воздействием электрического поля, каталитизаторов и концентрации влаги. Контроль состояния изоляции в этом случае существующими средствами затруднен и малоэффективен.

Третья группа вызывает изменения физических свойств и химического состава изоляции, в результате чего образуются шламы, изменяются цвет, температура вспышки масла, ускоряются процессы газообразования и др. Анализ существующих методов, способов и средств испытаний показал, что контроль состояния
изоляции основан на выявлении образовавшихся при
дуктов, концентрация которых значительна. При этом
появляются побочные признаки, обнаруживающие ухудшение характеристик изоляции, например час-
тные разряды. Аварии и отбраковки происходят из-за превышения predelыных параметров.
На рисунке показаны последствия аварий транс-
форматорного оборудования (по материалам доклада
компании Culler-Hammer Predictive Diagnostics [3]).
Основные повреждения силовых трансформаторов
(без учета высоковольтных вводов) с указанием при-
чины их возникновения, характером и последствиями
их развития приведены в табл. 1 [4].

Повреждения: а – обмотки; б – шин; в – бака; г – треки

**Методы диагностирования силовых транс-
форматоров в эксплуатации**

Все измерения и анализы при диагностике транс-
форматоров можно условно разделить на пять групп [5].

Первая группа – традиционные измерения на от-
ключном трансформаторе тангенс угла диэлектри-
ческих потерь (tg δ) и сопротивления изоляции обмо-
tок и вводов, сопротивления обмоток постоянному
tоку, потеря холостого хода и сопротивления (напря-
жения) КЗ. Все эти измерения, как правило, регулярно
выполняются эксплуатационным персоналом.

Вторая группа – измерения на трансформаторах
при рабочем напряжении в режимах наибольших
нагрузок и холостого хода. Здесь можно выделить
следующие работы: измерения частичных и других
электрических разрядов; акустическое обследование
бака трансформатора с целью определения источни-
ков электрических разрядов. Для этого используются
система записи акустических сигналов с помощью осцилло
gрафа, а также локация акустических сигналов,
позволяющая оперативно определять звуковую частоту
источников механического характера, частичных, ис-
ковых или дуговых разрядов; акустическое обсле-
дование трансформатора (основанное на анализе спек-
tra колебаний поверхности бака) для определения
уровня прессовки обмоток и магнитопровода, а также
исследование системы охлаждения; термографическое
обследование бака трансформатора, вводов расшири-
tеля теплообменников (радиаторов), термографических
фильтров, электрических двигателей и маслонасосов
системы охлаждения, контактных соединений.

Таблица 1

| Уzel | Повреждение | Причина возникно-
вила повреждения	Характер и последствия развития повреждения	
Выгорание витковой изоляции и витков обмотки	Выгорание витковой изоляции и витков, разложение масла, разбрызгивание меди и разрушение изоляции	
Деформации обмотки	Недостаточная электрическая прочность обмоток	
Обмотка	Увлажнение и затратение изоляции обмоток	Нарушение герметичности трансформатора к токам КЗ
Инос изоляции обмоток	Снижение механической прочности изоляции обмоток	
Дефект изготовления прогнозируемой обмотки	Неравномерное выравнивание изоляции, готовка к выработке пробои	
Магнитопровод	Перегрев магнитопровода	Оплавление стали магнитопровода, разложение масла
Система охлаждения	Нарушение охлаждения трансформатора	Нарушение охлаждения трансформатора и затруднение механических примесей
Переключатели ответвления РПН	Нарушение контактов в РПН	Неработоспособность РПН
Переключатели ответвлений РПН	Нарушение перего-родки, изолирующей бак расширите-	
ля МНЧ от бака трансформатора	Загрязнение масла трансформатора, снижение его электрической прочности, ухудшение диагностики трансформатора	
Механическая неисправность ГОН	Инос элементов кинематической схемы	Обрастание контактов переключателей
Нарушение герметичности бака контейнера	Уплотнение бака уплотнителем уплотнителя	

Вестник МГТУ им. Г. И. Носова. 2012. № 1.
Третья группа — физико-химические анализы масла из бака, маслонаполненных вводов, устройств РГН, в том числе большая группа традиционных, широкого применения и эксплуатаций в измерениях пробного напряжения, кислотного числа и т.д. Кроме того, проводится хроматографический анализ характерных газов. Инфракрасная спектроскопия позволяет определять содержание антисептической присадки, выявлять различные шламы и осадки, растворенные в масле трансформатора.

Четвертая группа объединяет измерения систем непрерывного контроля (мониторинга) изоляции вводов и ежедневные измерения основных показателей работы трансформатора, которые осуществляются эксплуатационным персоналом.

Пятая группа — анализы, проводимые для трансформаторов с запланированным капитальным ремонтом по результатам первых четырех групп измерений. К этой группе относятся: определение степени полимеризации бумаги изоляции, прямые измерения ее влагосодержания, прочности и др.

Один из наиболее объективных показателей, позволяющих оценить информативность используемого метода, — диагностическая ценность. При наличии статистических данных этот показатель представляет собой численную оценку информации о состоянии оборудования, которой обладает интервал значений измеряемого параметра. В табл. 2 приведена оценка вида диагностической ценности методов контроля процессов, приводящих к повреждениям трансформатора [1].

Необходимо подчеркнуть, что признаки со случайной диагностической ценностью, определяемой отсутствием мононотонности изменения значений при развитии контролируемого процесса, не могут быть использованы для принятия решений о состоянии оборудования, а лишь в некоторых случаях могут свидетельствовать о необходимости более полного обследования.

Как следует из проведенного анализа, ни один из известных методов не может дать исчерпывающей картины состояния трансформаторов. Целесообразно применение комбинированных методов контроля без снятия напряжения (в режиме on-line). Для этого должны применяться как стационарные, так и переносные системы диагностирования, с целью наиболее полной оценки состояния, локализации неисправностей и выявления причин их возникновения.

Таблица 2

<table>
<thead>
<tr>
<th>Метод контроля</th>
<th>Анализируемый процесс</th>
<th>Вид диагностической ценности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хроматографический анализ газов, растворенных в масле</td>
<td>Перегрев токоведущих соединений и элементов конструкции внутренней изоляции, электрический разряд в масле</td>
<td>Сопутствующий показатель физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение степени полимеризации бумажной изоляции</td>
<td>Износ бумажной изоляции</td>
<td>Функция физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение содержания фурановых соединений в масле</td>
<td>Старение бумажной изоляции</td>
<td>Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие мононотонности и значимых различий изменения содержания от срока эксплуатации и степени износа изоляции. Случайная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение мутности масла</td>
<td>Коллоидно-дисперсные процессы в высоковольтных герметических вводах</td>
<td>Функция физико-химического состояния. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение поверхностного натяжения</td>
<td>Старение масла</td>
<td>Функция полярности жидкости. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>ИК-спектрометрия</td>
<td>Старение масла</td>
<td>Сопутствующий показатель наличия продуктов старения масла. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Тепловизионный контроль</td>
<td>Локальные зоны перегрева</td>
<td>Сопутствующий показатель теплового состояния трансформатора и токоведущих частей. Монотонность изменения во времени. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение частичных разрядов</td>
<td>Ионизацияционные процессы в изоляции</td>
<td>Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие мононотонности изменения во времени при развитии процесса. Случайная диагностическая ценность</td>
</tr>
<tr>
<td>Измерение сопротивления короткого замыкания</td>
<td>Деформация обмоток</td>
<td>Сопутствующий показатель изменения геометрии обмоток. Монотонность изменения во времени. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Метод низковольтных импульсов</td>
<td>Деформация обмоток</td>
<td>Сопутствующий показатель изменения степени разрушения обмоток. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
<tr>
<td>Определение усилий прессовки обмоток трансформатора по частоте собственных колебаний системы прессовки при внешнем импульсном механическом воздействии</td>
<td>Распрессовка обмоток</td>
<td>Сопутствующий показатель степени разрушения обмоток. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность</td>
</tr>
</tbody>
</table>
ДИАГНОСТИРОВАНИЕ СИЛОВЫХ ТРАНСФОРМАТОРОВ МЕТОДОМ АКУСТИЧЕСКОЙ ЛОКАЦИИ ЧАСТИЧНЫХ РАЗРЯДОВ

Выполнены эксперименты по измерению разрядной активности силовых трансформаторов центральной электростанции ОАО «ММК». Представлены графики распределения количества частичных разрядов в зависимости от величины их зарядов. Выполнена оценка технического состояния трансформаторов.

Ключевые слова: электротрансформаторы, частичные разряды, замеры, разрядная активность, техническое состояние, критерии, оценка.

Experiments on gauging of discharge activity of mains transformers of the central power station of open joint-stock company «MMK» are fulfilled. Graphics of allocation of quantity of partial bits depending on magnitude of their charges are presented. The estimation of availability index of product of transformers is fulfilled.

Key words: power station, transformers, partial bits, indications, discharge activity, availability index of product, criteria, an estimation.

Задачами исследований, результаты которых приводятся ниже, являются акустическая локация и обработка информации о частичных разрядах (ЧР) в объемных зонах (баках) трансформаторов энергоблоков центральной электростанции (ЦЭС) ОАО «ММК». Экспериментальные исследования выполнялись на шести трансформаторах, перечень которых представлен в табл. 1.

Измерение разрядной активности

Замеры проводились с помощью переносного прибора анализа частичных разрядов и локации зон дефектов в изоляции высоковольтного оборудования АР-700. С этой целью на внешних сторонах бака устанавливались акустические датчики. Выбор места их расположения осуществлялся согласно методике, рекомендованной фирмой-разработчиком прибора – ПВФ «Вибро-Центр» [1].

1. Датчики устанавливались на южной либо северной сторонах бака на расстоянии 50 см друг от друга.
2. Порог сигнала для всех трансформаторов задавался на уровне 50% максимального значения. При обработке результатов принимались во внимание сигналы, превышающие этот порог.
3. Настройки шума варьировались в зависимости от конкретного трансформатора и находились в пределах 45-50 мВ.
4. Замеры производились в течение 60-ти с.

Пример расположения датчиков на баке трансформатора № 5 и подключение прибора АР-700 показаны на рис. 1. Датчики устанавливались как на стороне низкого, так и на стороне высокого напряжений. Рассматривались варианты установки вблизи высоковольтных вводов, однако это вызвало определенные технические трудности.

Таблица 1

<table>
<thead>
<tr>
<th>Силовые трансформаторы ЦЭС</th>
<th>Расположение и назначение</th>
<th>Станционный номер</th>
<th>Тип и завод изготовитель</th>
<th>Заводской номер</th>
<th>Год выпуска / срок эксплуатации (лет)</th>
</tr>
</thead>
<tbody>
<tr>
<td>П5т-110кВ энергоблок</td>
<td>Tr-p №1</td>
<td>ТРДН - 40000 / 110-76У1, г.Тольятти</td>
<td>9835</td>
<td>1978 / 30</td>
<td></td>
</tr>
<tr>
<td>П5т-110кВ система</td>
<td>Tr-p №2</td>
<td>ТРДН - 63000 / 110-76У1, г.Тольятти</td>
<td>13580</td>
<td>1983 / 25</td>
<td></td>
</tr>
<tr>
<td>П5т-110кВ система</td>
<td>Tr-p №3</td>
<td>ТРДН - 63000 / 110-76У1, г.Тольятти</td>
<td>11964</td>
<td>1981 / 27</td>
<td></td>
</tr>
<tr>
<td>П5т-110кВ энергоблок</td>
<td>Tr-p №4</td>
<td>ТРДНУ - 80000, г.Москва</td>
<td>927673</td>
<td>1968 / 40</td>
<td></td>
</tr>
<tr>
<td>П5т-110кВ система</td>
<td>Tr-p №5</td>
<td>ТРДН - 63000 / 110-У1, г.Москва</td>
<td>1482839</td>
<td>2000 / 8</td>
<td></td>
</tr>
<tr>
<td>П5т-110кВ система</td>
<td>Tr-p №6</td>
<td>ТРДН - 63000 / 110-У1, г.Москва</td>
<td>1573104</td>
<td>1998 / 10</td>
<td></td>
</tr>
</tbody>
</table>
Для оценки технического состояния объекта необходимы обработки данных, полученных по итогам единичных замеров, и их анализ. Для этого удобно представить экспериментальные результаты в виде графиков изменения интенсивности ЧР в функции их амплитуды (либо кажущегося заряда) [2]. По итогам обработки результатов замеров, выполненных по сигналам от каждого из четырех акустических датчиков, получены распределения числа ЧР N по их зарядам q, пример которых представлен на рис. 3. При обработке результатов замеров подсчитывалось количество разрядов с амплитудой, превышающей заданный порог 50 мВ. Кроме того, ограничивались учетом только тех ЧР, которые повторяются не менее 10 раз за секунду. Предварительно выделялся спектр сигнала и осуществлялось обратное преобразование Фурье. Данные вычислительные операции выполняются с помощью программного обеспечения AtlantdB, входящего в программный пакет прибора AR-700 [3].

![Рис. 1. Пример установки датчиков прибора AR-700](image1)

На рис. 2 представлены характерные временные диаграммы, полученные на трансформаторе № 5. Акустические всплески, зафиксированные в исходных сигналах, поступающих с датчиков, характеризуют амплитуду, частоту и длительность ЧР.

![Рис. 2. Осциллограммы акустических сигналов с акустических каналов № 1 (а) и №2 (б)](image2)

Из анализа диаграмм следует, что
– диапазоны сигналов ЧР, замеренных разными датчиками, практически совпадают и находятся в пределах \(N = 0 \ldots 300 \) с \(^2\) (от 0 до 6 имп./с);
– по мере роста кажущегося заряда количество ЧР снижается, при этом зависимости имеют почти монотонный спадающий характер, что совпадает с результатами, представленными в [4].

Критерии оценки технического состояния

Диагностирование технического состояния силовых трансформаторов, автотрансформаторов, шунтирующих реакторов и вводов методом регистрации ЧР рекомендуется выполнять в соответствии с методиками использованием МУ 0634-2006, утвержденными концерном «Росэнергоатом» в 2006 г. [5]. Согласно этой методике на трансформаторах, рекомендуемых к обследованию, проводятся измерения следующих характеристик разрядных явлений в активной части, вводах и РПН.
– определение распределений \(N(q) \) для подтверждения факта повышенной разрядной активности;
– проведение объемной локации для идентификации зоны с повышенной разрядной активностью;
– определение формы разрядного явления (выявляются частичный разряд в изоляции, искрение между витками, дуговые процессы).

В соответствии с рекомендациями [5] трансформаторы разделяются на три группы в зависимости от характеристики \(N(q) \) (рис. 4):

1) С состоянием изоляции, соответствующим критерию «НОРМА» – если \(q_{\text{max}} \) меньше принятого уровня помех и ниже кривой №1 (область, ограниченная сверху кривой №1).

2) С состоянием изоляции, соответствующей «НОРМА С ОТКЛОНЕНИЯМИ» и «НОРМА СО ЗНАЧИТЕЛЬНЫМИ ОТКЛОНЕНИЯМИ» – если \(q_{\text{max}} \) лежит в области между кривыми №1 и №2.

3) С состоянием изоляции, соответствующем «УХУДШЕННОМУ» – если полученная зависимость \(N(q) \) превышает критериальную (область, лежащая выше кривой №2).

![Рис. 4. Критериальные кривые для трансформаторов согласно методику МУ 0634-2006](image)

Поскольку амплитуда ЧР, измеренных на трансформаторах ЭЦС, не превышает 500 мВ, а интенсивность – не выше 300 имп./с (6 имп./пер.), в соответствии с рис. 4, состояние всех трансформаторов соответствует критерию «НОРМА». Рекомендуется дальнейшая эксплуатация без ограничений.

В табл. 2 представлены возможные неисправности, соответствующие принятому разделению, а также рекомендации обслуживающему персоналу по дополнительному контролю и профилактическим мероприятиям. В табл. 3 представлены общие признаки, по которым может быть осуществлена предварительная локализация неисправностей в изоляции обмоток и магнитопровода трансформатора [4].

Кривые, представленные на рис. 4, могут считаться универсальными с достаточно высокой степенью достоверности, поскольку представленные критерии являются явно завышенными. Очевидно, что подобные кривые должны быть построены для различных типов изоляции трансформаторов. Для более достоверной оценки технического состояния необходимо проведение замеров при различных исходных условиях. Наиболее просто этого добиться можно в условиях пассивного эксперимента при изменениях нагрузки и температуры.

Таблица 2

<table>
<thead>
<tr>
<th>Классификация технического состояния</th>
<th>Описание возможного дефекта и явлений в нем</th>
<th>Рекомендации эксплуатационному персоналу</th>
</tr>
</thead>
<tbody>
<tr>
<td>Норма с наличием отклонений</td>
<td>Частичный разряд в изоляции</td>
<td>Эксплуатация без ограничений, профилактика согласно нормативно-технической документации, отвести сроки ремонтов на позднее время</td>
</tr>
<tr>
<td>Норма с ростом отклонений</td>
<td>Динамика роста разрядов в изоляции</td>
<td>Вводить ограничения по эксплуатации. 1) Дополнительная диагностика (ГХ-анализ), анализ фурановых соединений. 2) Дополнительная локация ЧР.</td>
</tr>
<tr>
<td>Ухудшенное состояние</td>
<td>Различные дефекты в изоляции</td>
<td>Ограничение эксплуатационных воздействий, планирование ремонта. 1) Участочный контроль в эксплуатации не-сколькою методами (измерение ЧР, ГХ-анализ). 2) Локализация дефекта осциллографированием. 3) Планирование сокращения ремонтов.</td>
</tr>
<tr>
<td>Предварительное состояние</td>
<td>Продолжительный разряд в изоляции</td>
<td>Измерение на рабочем напряжении и профилактический ремонт</td>
</tr>
</tbody>
</table>

![Таблица 2](image)
<table>
<thead>
<tr>
<th>Характеристики активности ЧР</th>
<th>Изоляция обмоток трансформатора</th>
<th>Изоляция магнитопровода</th>
<th>Результаты измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отсутствие признаков дефекта</td>
<td>Фиксируются только шумы, шумовая дрожь (бельй шум) не более 20 кПл</td>
<td>Участки с ЧР отсутствуют</td>
<td></td>
</tr>
<tr>
<td>Точечный источник ЧР</td>
<td>Имеется несколько мест (участков) с ионизационными процессами, одна или две мody, два-три типа осциллограмм</td>
<td>Имеются редкие случайные импульсы от ЧР, которые фиксируются в одном периоде сетевого напряжения</td>
<td>Определяется несколько участков с ЧР-активностью</td>
</tr>
<tr>
<td>Многочастотные ЧР в изоляции</td>
<td>Имеется 5–7 мест с источником ЧР в участках с наибольшим потенциалом. На кривой N(q) несколько мод</td>
<td>Повторяемость сигналов в каждом периоде сетевого напряжения. На кривой N(q) отмечается некоторый интервал с сигналом или модой</td>
<td></td>
</tr>
<tr>
<td>Признаки депрессии изоляции</td>
<td>Число мест с ЧР более 10, N(q) является падающей, неплотной, нечетких максимумов для очагов ЧР на участках с наибольшем потенциалом</td>
<td>На кривой N(q) наличие 3–5 пиков, соответствующих ЧР в изоляции магнитопровода</td>
<td>Имеется противоположная зона с ЧР-активностью</td>
</tr>
</tbody>
</table>

Таблица 3

Условия локализации разрядной активности в изоляции конструктивных элементов силовых трансформаторов

В результате многократных экспериментов по акустической локации ЧР, выполненных на трансформаторах ЦЭС в течение 2,5 лет, сделаны следующие выводы:

1. Подтверждены основные достоинства акустического метода:
 - оперативность – измерение, контроль и последующий анализ результатов проводятся без снятия силового напряжения;
 - принципиальная возможность достоверного диагностирования нарушений технического состояния трансформатора и локализации участков возникновения повреждений.
2. Подтверждена целесообразность проведения дальнейших диагностических обследований трансформаторов ЦЭС с применением переносного прибора анализа частичных разрядов и локации зоны дефектов в изоляции высоковольтного оборудования. Целью таких исследований является сбор статистической информации, позволяющей сделать однозначные выводы о техническом состоянии, характере неисправностей и местах возникновения дефектов.
3. Подтверждена прямая взаимосвязь частоты возникновения ЧР и длительности эксплуатации трансформатора после капитального ремонта. Накопление информации и обработка сигналов позволят определить количественные характеристики ЧР, потребности которых представлен в [2]. С этой целью даны рекомендации по приобретению и установке на трансформаторах №1–4 (с наиболее продолжительными сроками эксплуатации) стационарных приборов с целью постоянного контроля развития ЧР. Для остальных трансформаторов рекомендовано проведение периодических замеров с частотой не реже одного раза в 6 месяцев.

Обработка результатов путем визуальной оценки числа импульсов и их амплитуд не позволяет обеспечить высокой точности. Вместе с тем, по диаграммам, представленным на рис. 3, можно судить о частоте возникновения ЧР, уровне их амплитуд либо кажушихся зарядов и сделать предварительные выводы о техническом состоянии. С целью идентификации вложений целесообразно более четко локализовать места повышенной разрядной активности (скопления ЧР) и прослеживать динамику их развития. Для этого необходимо применить методы математической обработки динамически изменяющихся данных, наиболее приемлемым из которых является метод кластерного анализа [6].

Список литературы

Bibliography

Трифоненков Леонид Петрович — руководитель проекта отдела литьевых проектов ООО «РУСАЛ ИТЦ», г. Красноярск. Тел (8391) 256-40-29. E-mail: Leonid.Triфоненков@rusal.com.

Туркин Иван Сергеевич — магистр кафедры горных машин и транспортно-технологических комплексов ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г. И. Носова». E-mail: Sailor19@yandex.ru.

Федосеев Сергей Анатольевич — канд. физ.-мат. наук, доц., ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет». Направление исследований: управление сложными системами. E-mail: fsa@gelicon.biz.

Фетисов Вадим Борисович — мастер загрузки доменного цеха ОАО «Магнитогорский мetailлургический комбинат».

Харченко Александр Сергеевич — аспирант кафедры металлургии черных металлов ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова». Тел. 8(3519) 29-84-30. Email: as.mgtu@mail.ru.

Чаплыгин Борис Александрович — д-р техн. наук, генеральный директор ОАО «Уральский научно-исследовательский институт абразивов и шлифования» г.Челябинск. Email: normativ_abraziv@mail.ru.

Черчицев Вячеслав Дмитриевич — д-р техн. наук, проф., зав. кафедрой промышленной экологии и безопасности жизнедеятельности ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова». Тел. (3519)298515.

Шабуров Андрей Дмитриевич — аспирант кафедры физического металлургирования и физики твёрдого тела Южно-Уральского государственного университета, г.Челябинск. Тел. (351)2679013. E-mail: adshaburov@mail.ru.

Шеметова Елена Сергеевна — ассистент кафедры технологии машиностроения ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова». E-mail: hellensh88@list.ru.
THE INFORMATION ABOUT THE AUTHORS

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Position and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agapitov Evgenie Borisovich</td>
<td>Ph.D., professor, candidate of the technical sciences Head Department Thermal engineering and energy system of Magnitogorsk State Technical University, Magnitogorsk. Phone: (3519) 29-85-28, 29-84-21. E-mail: jek_agapitov@mail.ru.</td>
</tr>
<tr>
<td>Alekhin Yuriy Georgievich</td>
<td>Ph.D., senior lecturer managing chair «Technology of metals and repair of forgings», FGOV VPO Kuzstak State Agricultural Academy of professor I.I. Ivanov. Phone /fax: (48712) 53-13-30. E-mail: academy@kgsha.ru.</td>
</tr>
<tr>
<td>Angelov Valerii Andreevich</td>
<td>post-graduate student at the department of geology at the State Educational Institution of Higher Professional Education «Magnitogorsk State Technical University named after G.I. Nosov». E-mail: Angelov.Valerii@mail.ru.</td>
</tr>
<tr>
<td>Baranov Vladimir Nikolaevich</td>
<td>candidate of science, docent of Department of foundry proceedings at the Institute of Nonferrous Metals and Materials Science FSEI HPE «Siberian Federal University», Krasnoyarsk. Phone: (3913) 213-36-21. E-mail: ike@mmk.ru.</td>
</tr>
<tr>
<td>Belevskiy Leonid Sergeevich</td>
<td>doctor of tech. sci., professor of the applied me-chancs department. Educational institution of Higher Professional Education «Magnitogorsk State Technical University named after G.I. Nosov». Phone: 8 (3519) 29-84-38. Email: lbelevskyi@mail.ru.</td>
</tr>
<tr>
<td>Devjatov Diljaur Hasanovich</td>
<td>post-graduate student of the Department of pressure treatment of metals at the Institute of Nonferrous Metals and Materials Science FSEI HPE «Siberian Federal University», Krasnoyarsk. Phone: (8391) 206-37-31. E-mail: attitude@mail.ru.</td>
</tr>
<tr>
<td>Cherchintsev Vyacheslav Dmitrievich</td>
<td>doctor of technical science, Professor, Director of the department of industrial ecology and life safety of SIE (State Educational Institution) HPE (Higher Professional Education) «Magnitogorsk State Technical University named after G.I. Nosov». Phone: (3519)298515.</td>
</tr>
<tr>
<td>Chuplygin Boris Aleksandrovich</td>
<td>doctor of technical sciences, the principal scientific employee of chair of «Technology of metals» of Kurgan State University. Phone: (3522) 469044. Email: gogotin@rambler.ru.</td>
</tr>
<tr>
<td>Danilov Gennady Vladimirovich</td>
<td>Ph.D in economics, associate Professor of the Finance and Accounting Department of the G.I. Nosov Magnitogorsk State Technical University. Email: jenya@yandex.ru.</td>
</tr>
<tr>
<td>Devjatov Diljaur Hasanovich</td>
<td>student of the fourth course direction of explorations: Development and exploration of modern assemblies for manufacturing of steel sheet. Phone: 8 (3519) 24-75-20. Email: valki@mmk.ru.</td>
</tr>
<tr>
<td>Emeljanenko Elena Alekseevna</td>
<td>cand. tech. sci business and geology at the State Educational Institution of Higher Professional Education «Magnitogorsk State Technical University named after G.I. Nosov». Phone: 29-85-42.</td>
</tr>
<tr>
<td>Emeljanenko Mikhail Mikhailovich</td>
<td>student of the fourth course of chair of Sci business and geology at the State Educational Institution of Higher Professional Education «Magnitogorsk State Technical University named after G.I. Nosov». Phone: 29-85-42.</td>
</tr>
<tr>
<td>Evdokimov Sergey Alekseevich</td>
<td>Cand. Tech. Sci., the senior lecturer, the senior lecturer of chair of electronics and «Magnitogorsk State Technical University named after G.I. Nosov», microelectronics, a direction of explorations: system develop-opment of monitoring and diagnostic of a power electric equipment. E-mail: evdnomag-nit@yandex.ru.</td>
</tr>
<tr>
<td>Fedoseev Sergey Anatolevich</td>
<td>– cand. of the technical sciences; associate professor of the processes and processes mathematical modeling department, State National Research Polytechnic University of Perm. E-mail: fsa@gecon.com.biz.</td>
</tr>
<tr>
<td>Fetisov Vadim Borisovich</td>
<td>– foreman of the charge of the blast furnace shop OISC «Magnitogorsk iron-and-steel works».</td>
</tr>
<tr>
<td>Gadadov Vladimir Nikolaevich</td>
<td>the doctor of technical science, professor of the chair of «Materials authority and welding fabrication», South West State University. Phone/fax: (4712) 50-68-80. E-mail: Gadadov-VN@yandex.ru.</td>
</tr>
<tr>
<td>Gavrishev Sergey Evgenievich</td>
<td>– Dr. Tech. Sci., the professor, the Director of the Institute of Mining and Transport of the Federal State Education Institution of the Higher Professional Education (FSEI HPE) «Magnitogorsk State Technical University named after G.I. Nosov». Phone: (3519)298575. E-mail: ormpi-cg@mail.ru.</td>
</tr>
<tr>
<td>Gerasimov Vasily Yakovlevich</td>
<td>– Doctor of Engineering Science, Professor, post-graduate student of the department of «Technology of metals» of Kurgan State University. Phone: (3522) 469044. E-mail: rector@kzu.kurgan.ru.</td>
</tr>
<tr>
<td>Gogotin Alexander Anatolevich</td>
<td>– Cand. Tech. Sci., the senior lecturer of chair of «Materials authority and metalforming», South West State University. Phone/fax: (4712) 50-68-80. E-mail: Gadadov-VN@yandex.ru.</td>
</tr>
<tr>
<td>Gorehov Yuriy Vasilevich</td>
<td>– candidate of technical sciences, associate professor «Metal forming department» Institute nonferrous metals and materials technology Siberian federal university, Krasnoyarsk. Phone: 8 (391) 2133550.</td>
</tr>
<tr>
<td>Gun Igor Gennadevich</td>
<td>– a Dr.Sci.Tech., the professor, the professor of chair «Production engineering, certification and tools of cars», a direction of explorations: development and exploration of modern assemblies for manufacturing of steel sheet. Phone: (3519)2984-31.</td>
</tr>
<tr>
<td>Ismagilov Ramil Rakhmatovich</td>
<td>– the leading specialist of equipment Department Magnitogorsk integrated iron and steel works. OISC «Magnitogorsk Iron and Steel Works». Phone: 8 (3519) 24-75-20. Email: vaikm@mmk.ru.</td>
</tr>
<tr>
<td>Kairalaqap Yerlan Tokpaevich</td>
<td>– research scientist Chemical and metallurgical Institute, c.Karaganda, Kazakhstan. Research: nonferrous metallurgy. Phone: 43-31-61. Email: hmi@mail.krg.kz.</td>
</tr>
<tr>
<td>Kazakova Agapitevna</td>
<td>– professor, head of natural resources of the State Education Institution of Higher Professional Education «Magnitogorsk State Technical University named after G.I. Nosov». Phone: (3519)2985-34. Email: prmpa@maqtu.ru.</td>
</tr>
<tr>
<td>Karandaev Alexander Sergeyevich</td>
<td>– Dr.Sci.Tech., the professor, the principal scientific employee of chair of an electrical engineering and electrotechnical systems of Magnitogorsk State Technical University named after G.I. Nosov. A direction of explorations: development energy saving and high dynamic electric drives, electric equipment diagnostic. E-mail: askaran@mail.ru.</td>
</tr>
<tr>
<td>Karimova Lyutsiya Monirovna</td>
<td>– candidate of technical sciences, elder research scientist Chemical and metallurgical Institute, c.Karaganda, Kazakhstan. Research: nonferrous metallurgy. Phone: 43-31-61. Email: lutsia.08@mail.ru.</td>
</tr>
<tr>
<td>Karatsay Irina Leonidovna</td>
<td>– Senior Lecturer of department of Management, and Management of OISC «Rudnyi Industrial Institute», Republic of Kazakhstan. Phone: 8-714-31-50401 (доб. 113). Email: peksa@mail.ru.</td>
</tr>
<tr>
<td>Katrjun Viktor Petrovich</td>
<td>– associate professor «Metal forming department» Institute nonferrous metals and materials technology Siberian federal university, Krasnoyarsk. Phone: 8 (391) 2133550.</td>
</tr>
<tr>
<td>Kazakov Alexander Sergeyevich</td>
<td>– candidate of technical science, senior expert of the Continuous Steel Casting Laboratory, Central Laboratory , OISC «Magnitogorsk Iron and Steel Works». Phone number: 8(3519)25-32-87. E-mail: kazakov.as@mmk.ru.</td>
</tr>
<tr>
<td>Kharchenko Alexander Sergeyevich</td>
<td>– post-graduate student of the department of metallurgy of ferrous metals of «MSTU named after G.I. Nosov». Phone: (3519) 29-84-30. Email: as.mtsgu@mail.ru.</td>
</tr>
<tr>
<td>Kornilov Gennady Petrovich</td>
<td>– doctor of technical science, Professor Magnitogorsk State Technical University named after G.I. Nosov. Phone: (3519)298534. E-mail: kornov_sn@mmk.ru.</td>
</tr>
<tr>
<td>Kornilov Sergey Nikolayevich</td>
<td>– Dr. Tech. Sci., the professor, head of the department of industrial transport of the HPE «Magnitogorsk State Technical University named after G.I. Nosov». Phone: (3519)298479. E-mail: Korn_mng@mail.ru.</td>
</tr>
<tr>
<td>Kornilov Sergey Nikolayevich</td>
<td>– post-graduate student of the department of «Power supply industrial enterprises» of SEI (State Educational Institution) HPE (Higher Professional Education) «Magnitogorsk State Technical University named after G.I. Nosov». Phone: (3519)298534. E-mail: kornilov_sn@mmk.ru.</td>
</tr>
<tr>
<td>Kvashnin Boris Nikolaevich</td>
<td>– Ph.D., the senior lecturer of chair «Quality management and machine-building technologies», the Voro-</td>
</tr>
</tbody>
</table>
nezhe state technological academy. E-mail: bobkuk@mail.ru; bodies. Phone/fax: (4732) 53-26-30, 55-19-49.

Lednev Alexander Sergeevich – a Student of Voronezh State Technical University. E-mail: Tal220765@yandex.ru.

Mirzoev Dzhahal Aminovich – doctor of physical and math- ematical science, professor of the Physical Metallurgy and Solid State Physics Department, Southern Ural State University. Phone: (351)2679013. E-mail: mirzayev@physmet.susu.ac.ru.

Mirzoev Alexander Aminulaevich – doctor of physical and math- ematical science, professor of the General and Theoretical Physics Department, Southern Ural State University. Phone: (351)2679013. E-mail: mirzoev@physics.susu.ac.ru.

Moiseev Vladimir Olegovich – a post-graduate student of automatic electric drive, power electronics, control systems of Magnitogorsk State Technical University of G.I. Nosov. Phone number: 8(3519)29-84-49. E-mail: mcm@magtu.ru.

Omelchenko Evgeniy Yakovlevich – candidate of the technical sciences degree, associate professor of the Solid State Physics Department, Southern Ural State University. Phone: (351)2679013. E-mail: raskatov@pochta.ru.

Osipov Vladimir Vladimirovich – candidate of physical and mathematical sciences, the senior lecturer of chair «Higher mathematics» of Institute of fundamental preparation Siberian federal university, Krasnoyarsk. Phone: 8 (391)2679013.

Paryshev Dmitry Nikolaevich – General Director of CSC «Kurgan- most», Phone: (3522) 410050. E-mail: contact@kurganmost.ru.

Pashneva Tatyana Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.

Pashneva Tatyana Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.

Pashkevich Irina Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.

Pashkevich Irina Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.

Pashkevich Irina Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.

Pashkevich Irina Vladimirovna – Cand. Tech. Sci., the senior lecturer of the Department of «Materials technology and welding manufacture», Southwest state university. Phone/Fax: (4742) 58-71-04. E-mail: svarka-kstu@mail.ru; bodies.
УВАЖАЕМЫЕ КОЛЛЕГИ!

Мы приглашаем Вас к участию в нашем журнале в качестве авторов, рекламодателей и читателей. Журнал формируется по разделам, отражающим основные направления научной деятельности ученых МГТУ, в частности:

- РАЗРАБОТКА ПОЛЕЗНЫХ ИСКОПАЕМЫХ.
- МЕТАЛЛУРГИЯ ЧЕРНЫХ, ЦВЕТНЫХ И РЕДКИХ МЕТАЛЛОВ.
- ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ.
- ЛИТВЕОЕ ПРОИЗВОДСТВО
- ТЕХНОЛОГИИ ОБРАБОТКИ МАТЕРИАЛОВ.
- МАТЕРИАЛОВЕДЕНИЕ И ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕТАЛЛОВ.
- СТАНДАРТИЗАЦИЯ, СЕРТИФИКАЦИЯ И УПРАВЛЕНИЕ КАЧЕСТВОМ.
- МОДЕЛИРОВАНИЕ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ.
- НОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И ОБОРУДОВАНИЕ.
- ЭНЕРГЕТИКА МЕТАЛЛУРГИИ, ЭНЕРГОСБЕРЕЖЕНИЕ И ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ.
- УПРАВЛЕНИЕ, АВТОМАТИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕТАЛЛУРГИИ.
- СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ В МЕТАЛЛУРГИИ.
- ЭКОЛОГИЯ МЕТАЛЛУРГИЧЕСКОЙ ОТРАСЛИ.
- ЭКОНОМИКА, УПРАВЛЕНИЕ И РЫНОК ПРОДУКЦИИ.
- СТРАТЕГИЯ РАЗВИТИЯ, ПОДГОТОВКА И ОБУЧЕНИЕ СПЕЦИАЛИСТОВ.
- ИНФОРМАЦИЯ И др.

Раздел «Новые исследования» или «Краткие сообщения» предназначен для оперативной публикации работ преимущественно аспирантов. В журнал входят учебно-методический и библиографический разделы. Общее количество разделов и их объем может варьироваться от номера к номеру.

ТРЕБОВАНИЯ К СТРАТЬЯМ, ПРИНИМАЕМЫМ К ПУБЛИКАЦИИ

I. Рекомендуемый объем статьи – не более 6–8 стр.

К статье прилагаются:

1) экспертное заключение о возможности опубликования;
2) рецензия;
3) сведения об авторах (на английском и русском языках): фамилия, имя, отчество, учёная степень, звание и должность, полное название учреждения, направление исследований, контактный телефон и E-mail каждого автора (всё перечислять в одном абзаце);
4) аннотацию на английском и русском языках (аннотация должна содержать актуальность, постановку проблемы и пути решения проблемы; необходимо избегать лишних деталей и конкретных цифр; количество слов – 50–100);
5) список литературы на английском и русском языках;
6) ключевые слова на английском и русском языках.

II. Текст статьи, сведения об авторах, реферат, список литературы и ключевые слова представляются на электронном носителе в виде файла, созданного средствами Microsoft Word 2003, и распечаткой на стандартных листах бумаги формата А4.

При наборе статьи в Microsoft Word 2003 рекомендуется следующие установки:
1) шрифт – Times New Roman, размер – 14 pt, межстрочный интервал – одинарный, перенос слов – автоматический;
2) при вставке формул использовать встроенный редактор формул Microsoft Equation со стандартными установками;
3) рисунки и фотографии, вставленные в документ, должны быть четко выполнены, допускать перемещение в тексте и возможность изменения размеров (толщины линий и размеры обозначений должны обеспечивать четкость при уменьшении рисунка до рациональных размеров). Рисунки предоставлять в виде распечатки на стандартных листах бумаги формата А4 и отдельным файлом в формате *.TIF, *.JPG, с разрешением 300 dpi, B&W – для черно-белых иллюстраций, Grayscale – для полутоновых, максимальный размер рисунка с подписью – 150×235 мм. В тексте статьи должны быть подрисуночные надписи в местах размещения рисунков. Например:

Рис. 4. Расчётная зависимость \(\gamma(t)=I_{\text{эд}}/I_{\text{ш}} \) от времени и удалённости KЗ от выводов асинхронного двигателя

Внимание! Публикация статей является бесплатной. Преимущество опубликования предоставляется авторам и учреждениям, оформившим подпись на журнал.

Статьи проходят обязательное научное рецензирование.

Редколлеги оставляет за собой право отклонить статьи, не отвечающие указанным требованиям.

По вопросам публикации статей обращаться: 455000, г. Магнитогорск, пр. Ленина, 38. Магнитогорский государственный технический университет, Редакция журнала «Вестник МГТУ» М. Чукину.

Телефоны: (3519) 29-85-26, 22-14-93.
E-mail: rio_mgtu@ru; vestnik@magtu.ru (с указанием темы сообщения «Вестник МГТУ»).